It is quite a three-pipe problem.

Sir Arthur Conan Doyle
The Adventures of Sherlock Holmes

3.1 What Is Pipelining? 125

3.2 The Basic Pipeline for DLX 132
3.3 The Major Hurdle of Pipelining—Pipeline Hazards 139
3.4 Data Hazards 146
3.5 Control Hazards 161
3.6 What Makes Pipelining Hard to Implement? 178

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 187

3.8 Crosscutting Issues: Instruction Set Design and Pipelining 199
3.9 Putting It All Together: The MIPS R4000 Pipeline 201
3.10 Fallacies and Pitfalls 209
3.11 Concluding Remarks 211
3.12 Historical Perspective and References 212

Exercises 214

3.1 | What Is Pipelining?

Pipelining is an implementation technique whereby multiple instructions are
overlapped in execution. Today, pipelining is the key implementation technique
used to make fast CPUs.

A pipeline is like an assembly line. In an automobile assembly line, there are
many steps, each contributing something to the construction of the car. Each step
operates in parallel with the other steps, though on a different car. In a computer
pipeline, each step in the pipeline completes a part of an instruction. Like the
assembly line, different steps are completing different parts of different instruc-
tions in parallel. Each of these steps is callpipa stageor apipe segmeniThe
stages are connected one to the next to form a pipe—instructions enter at one
end, progress through the stages, and exit at the other end, just as cars would i
an assembly line.

In an automobile assembly lindyroughputis defined as the number of cars
per hour and is determined by how often a completed car exits the assembly line.
Likewise, the throughput of an instruction pipeline is determined by how often an
instruction exits the pipeline. Because the pipe stages are hooked together, all the

126

Chapter 3 Pipelining

stages must be ready to proceed at the same time, just as we would require in an
assembly line. The time required between moving an instruction one step down
the pipeline is anachine cycleBecause all stages proceed at the same time, the
length of a machine cycle is determined by the time required for the slowest pipe
stage, just as in an auto assembly line, the longest step would determine the time
between advancing the line. In a computer, this machine cycle is usually one
clock cycle (sometimes it is two, rarely more), although the clock may have
multiple phases.

The pipeline designer’s goal is to balance the length of each pipeline stage,
just as the designer of the assembly line tries to balance the time for each step in
the process. If the stages are perfectly balanced, then the time per instruction on
the pipelined machine—assuming ideal conditions—is equal to

Time per instruction on unpipelined machine
Number of pipe stages

Under these conditions, the speedup from pipelining equals the number of pipe
stages, just as an assembly line witstages can ideally produce carsmes as

fast. Usually, however, the stages will not be perfectly balanced; furthermore,
pipelining does involve some overhead. Thus, the time per instruction on the
pipelined machingvill not have its minimum possible value, yet it can be close.

Pipelining yields a reduction in the average execution time per instruction.
Depending on what you consider as the base line, the reduction can be viewed as
decreasing the number of clock cycles per instruction (CPI), as decreasing the
clock cycle time, or as a combination. If the starting point is a machine that takes
multiple clock cycles per instruction, then pipelining is usually viewed as reduc-
ing the CPI. This is the primary view we will take. If the starting point is a ma-
chine that takes one (long) clock cycle per instruction, then pipelining decreases
the clock cycle time.

Pipelining is an implementation technique that exploits parallelism among the
instructions in a sequential instruction stream. It has the substantial advantage
that, unlike some speedup techniques (see Chapter 8 and Appendix B), it is not
visible to the programmer. In this chapter we will first cover the concept of pipe-
lining using DLX and a simple version of its pipeline. We use DLX because its
simplicity makes it easy to demonstrate the principles of pipelining. In addition,
to simplify the diagrams we do not include the jump instructions of DLX; adding
them does not involve new concepts—only bigger diagrams. The principles of
pipelining in this chapter apply to more complex instruction sets than DLX or its
RISC relatives, although the resulting pipelines are more complex. Using the
DLX example, we will look at the problems pipelining introduces and the perfor-
mance attainable under typical situations. Section 3.9 examines the MIPS R4000
pipeline, which is similar to other recent machines with extensive pipelining.
Chapter 4 looks at more advanced pipelining techniques being used in the
highest-performance processors.

3.1 What Is Pipelining? 127

Before we proceed to basic pipelining, we need to review a simple implemen-
tation of an unpipelined version of DLX.

A Simple Implementation of DLX

To understand how DLX can be pipelined, we need to understand how it is imple-
mentedwithout pipelining. This section shows a simple implementation where
every instruction takes at most five clock cycles. We will extend this basic imple-
mentation to a pipelined version, resulting in a much lower CPI. Our unpipelined
implementation is not the most economical or the highest-performance imple-
mentation without pipelining. Instead, it is designed to lead naturally to a pipe-
lined implementation. We will indicate where the implementation could be
improved later in this section. Implementing the instruction set requires the intro-
duction of several temporary registers that are not part of the architecture; these
are introduced in this section to simplify pipelining.

In sections 3.1-3.5 we focus on a pipeline for an integer subset of DLX that
consists of load-store word, branch, and integer ALU operations. Later in the
chapter, we will incorporate the basic floating-point operations. Although we dis-
cuss only a subset of DLX, the basic principles can be extended to handle all the
instructions.

Every DLX instruction can be implemented in at most five clock cycles. The
five clock cycles are as follows.

1. Instruction fetch cyclélF):

IR « Mem[PC]
NPC -~ PC+4

Operation: Send out the PC and fetch the instruction from memory into the
instruction register (IR); increment the PC by 4 to address the next sequential
instruction. The IR is used to hold the instruction that will be needed on sub-
sequent clock cycles; likewise the register NPC is used to hold the next se-
quential PC.

2. Instruction decode/register fetch cy¢lB):

A ~ Regs[R .10 |;

B ~ Regs[iR 11,15 I
Imm ~ (IR 16) " ##IR 16.31)

Operation:Decode the instruction and access the register file to read the regis-
ters. The outputs of the general-purpose registers are read into two temporary
registers (A and B) for use in later clock cycles.The lower 16 bits of the IR are
also sign-extended and stored into the temporary register Imm, for use in the
next cycle.

128

Chapter 3 Pipelining

Decoding is done in parallel with reading registers, which is possible be-
cause these fields are at a fixed location in the DLX instruction format (see
Figure 2.21 on page 99). This technique is knowrixasl-field decoding
Note that we may read a register we don't use, which doesn’t help but also
doesn’t hurt. Because the immediate portion of an instruction is located in an
identical place in every DLX format, the sign-extended immediate is also cal-
culated during this cycle in case it is needed in the next cycle.

. Execution/effective address cy¢eX):

The ALU operates on the operands prepared in the prior cycle, performing one
of four functions depending on the DLX instruction type.

« Memory reference:

ALUOutput ~ A+ Imm,
Operation The ALU adds the operands to form the effective address and
places the result into the register ALUOutput.

« Register-Register ALU instruction:

ALUOutput ~ A func B;

Operation:The ALU performs the operation specified by the function code on
the value in register A and on the value in register B. The result is placed in
the temporary register ALUOutput.

« Register-immediate ALU instruction:

ALUOQutput ~ A op Imm;

Operation: The ALU performs the operation specified by the opcode on the
value in register A and on the value in register Imm. The result is placed in the
temporary register ALUOutput.

« Branch:

ALUOutput — NPC + Imm;
Cond ~(A 0p0)

Operation: The ALU adds the NPC to the sign-extended immediate value in
Imm to compute the address of the branch target. Register A, which has been
read in the prior cycle, is checked to determine whether the branch is taken.
The comparison operationp is the relational operator determined by the
branch opcode; for examplap is “==" for the instructiorBEQZ

The load-store architecture of DLX means that effective address and execu—

tion cycles can be combined into a single clock cycle, since no instruction needs

3.1 What Is Pipelining? 129

to simultaneously calculate a data address, calculate an instruction target address
and perform an operation on the data. The other integer instructions not included
above are jumps of various forms, which are similar to branches.

4. Memory access/branch completion cy@UeM):
The PC is updated for all instructio ~ NPC;
« Memory reference:

LMD ~ Mem[ALUOutput] or
Mem[ALUOutput] < B;

Operation: Access memory if needed. If instruction is a load, data returns
from memory and is placed in the LMD (load memory data) register; if it is a
store, then the data from the B register is written into memory. In either case
the address used is the one computed during the prior cycle and stored in the
register ALUOutput.

« Branch:
if (cond) PC ~ ALUOutput

Operation:If the instruction branches, the PC is replaced with the branch des-
tination address in the register ALUOutput.

5. Write-back cycléWB):
« Register-Register ALU instruction:
Regs[IR 16.20 1 < ALUOutput;
« Register-immediate ALU instruction:
Regs[IR 11.15 1 < ALUOutput;
» Load instruction:
Regs[IR 11.15 1 <« LMD;
Operation: Write the result into the register file, whether it comes from the
memory system (which is in LMD) or from the ALU (which is in ALUOut-
put); the register destination field is also in one of two positions depending on
the function code.
Figure 3.1 shows how an instruction flows through the datapath. At the end of

each clock cycle, every value computed during that clock cycle and required on a
later clock cycle (whether for this instruction or the next) is written into a storage

130 Chapter 3 Pipelining

device, which may be memory, a general-purpose register, the PC, or a temporary
register (i.e., LMD, Imm, A, B, IR, NPC, ALUOutput, or Cond). The temporary
registers hold values between clock cycles for one instruction, while the other
storage elements are visible parts of the state and hold values between successive

instructions.
) : Execute/ : :]
Instruction fetch Instruction decode/ : address : Memory § Wiite
register fetch : calculation : access : back
M
u
X
Add NPC
: | geren ETEC L
4 : i “e7 taken~O" :
PC

. (Al —
Instruction _», Registers :
memory : :

Data
memory

—

L
16 @ 32 :
@ Imm

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock

cycles. Although the PC is shown in the portion of the datapath that is used in instruction fetch and the registers are shown
in the portion of the datapath that is used in instruction decode/register fetch, both of these functional units are read as well
as written by an instruction. Although we show these functional units in the cycle corresponding to where they are read, the
PC is written during the memory access clock cycle and the registers are written during the write back clock cycle. In both
cases, the writes in later pipe stages are indicated by the multiplexer output (in memory access or write back) that carries a
value back to the PC or registers. These backward-flowing signals introduce much of the complexity of pipelining, and we
will look at them more carefully in the next few sections.

In this implementation, branch and store instructions require four cycles and
all other instructions require five cycles. Assuming the branch frequency of 12%
and a store frequency of 5% from the last chapter, this leads to an overall CPI of
4.83. This implementation, however, is not optimal either in achieving the best
performance or in using the minimal amount of hardware given the performance

3.1 What Is Pipelining? 131

level. The CPI could be improved without affecting the clock rate by completing
ALU instructions during the MEM cycle, since those instructions are idle during
that cycle. Assuming ALU instructions occupy 47% of the instruction mix, as we
measured in Chapter 2, this improvement would lead to a CPI of 4.35, or an im-
provement of 4.82/4.35 = 1.1. Beyond this simple change, any other attempts to
decrease the CPI may increase the clock cycle time, since such changes woulc
need to put more activity into a clock cycle. Of course, it may still be beneficial to
trade an increase in the clock cycle time for a decrease in the CPI, but this re-
quires a detailed analysis and is unlikely to produce large improvements, espe-
cially if the initial distribution of work among the clock cycles is reasonably
balanced.

Although all machines today are pipelined, this multicycle implementation is
a reasonable approximation of how most machines would have been imple-
mented in earlier times. A simple finite-state machine could be used to implement
the control following the five-cycle structure shown above. For a much more
complex machine, microcode control could be used. In either event, an instruc-
tion sequence like that above would determine the structure of the control.

In addition to these CPI improvements, there are some hardware redundancies
that could be eliminated in this multicycle implementation. For example, there
are two ALUs: one to increment the PC and one used for effective address and
ALU computation. Since they are not needed on the same clock cycle, we could
merge them by adding additional multiplexers and sharing the same ALU. Like-
wise, instructions and data could be stored in the same memory, since the data
and instruction accesses happen on different clock cycles.

Rather than optimize this simple implementation, we will leave the design as
it is in Figure 3.1, since this provides us with a better base for the pipelined im-
plementation.

As an alternative to the multicycle design discussed in this section, we could
also have implemented the machine so that every instruction takes one long clock
cycle. In such cases, the temporary registers would be deleted, since there woulc
not be any communication across clock cycles within an instruction. Every in-
struction would execute in one long clock cycle, writing the result into the data
memory, registers, or PC at the end of the clock cycle. The CPI would be one for
such a machine. However, the clock cycle would be roughly equal to five times
the clock cycle of the multicycle machine, since every instruction would need to
traverse all the functional units. Designers would never use this single-cycle im-
plementation for two reasons. First, a single-cycle implementation would be very
inefficient for most machines that have a reasonable variation among the amount
of work, and hence in the clock cycle time, needed for different instructions. Sec-
ond, a single-cycle implementation requires the duplication of functional units
that could be shared in a multicycle implementation. Nonetheless, this single-
cycle datapath allows us to illustrate how pipelining can improve the clock cycle
time, as opposed to the CPI, of a machine.

132

Chapter 3 Pipelining

32 | The Basic Pipeline for DLX

We can pipeline the datapath of Figure 3.1 with almost no changes by starting a
new instruction on each clock cycle. (See why we chose that design!) Each of the
clock cycles from the previous section becompipa stagea cycle in the pipe-

line. This results in the execution pattern shown in Figure 3.2, which is the typi-
cal way a pipeline structure is drawn. While each instruction takes five clock
cycles to complete, during each clock cycle the hardware will initiate a new in-
struction and will be executing some part of the five different instructions.

Clock number
Instruction number 1 2 3 4 5 6 7 8 9
Instructioni IF ID EX MEM WB
Instructioni + 1 IF ID EX MEM WB
Instructioni + 2 IF ID EX MEM WB
Instructioni + 3 IF ID EX MEM WB
Instructioni + 4 IF ID EX MEM WB

FIGURE 3.2 Simple DLX pipeline. On each clock cycle, another instruction is fetched and begins its five-cycle execution.
If an instruction is started every clock cycle, the performance will be up to five times that of a machine that is not pipelined.
The names for the stages in the pipeline are the same as those used for the cycles in the implementation on pages 127—
129: IF = instruction fetch, ID = instruction decode, EX = execution, MEM = memory access, and WB = write back.

Your instinct is right if you find it hard to believe that pipelining is as simple
as this, because it's not. In this and the following sections, we will make our DLX
pipeline “real” by dealing with problems that pipelining introduces.

To begin with, we have to determine what happens on every clock cycle of the
machine and make sure we don't try to perform two different operations with the
same datapath resource on the same clock cycle. For example, a single ALU can-
not be asked to compute an effective address and perform a subtract operation at
the same time. Thus, we must ensure that the overlap of instructions in the pipe-
line cannot cause such a conflict. Fortunately, the simplicity of the DLX instruc-
tion set makes resource evaluation relatively easy. Figure 3.3 shows a simplified
version of the DLX datapath drawn in pipeline fashion. As you can see, the major
functional units are used in different cycles and hence overlapping the execution
of multiple instructions introduces relatively few conflicts. There are three obser-
vations on which this fact rests.

First, the basic datapath of the last section already used separate instruction
and data memories, which we would typically implement with separate instruc-
tion and data caches (discussed in Chapter 5). The use of separate caches elimi-
nates a conflict for a single memory that would arise between instruction fetch

3.2 The Basic Pipeline for DLX 133

Time (in clock cycles)

CC1

Program execution order (in instructions)

FIGURE 3.3 The pipeline can be thought of as a series of datapaths shifted in time. This shows the overlap among
the parts of the datapath, with clock cycle 5 (CC 5) showing the steady state situation. Because the register file is used as
a source in the ID stage and as a destination in the WB stage, it appears twice. We show that it is read in one stage and
written in another by using a solid line, on the right or left, respectively, and a dashed line on the other side. The abbreviation
IM is used for instruction memory, DM for data memory, and CC for clock cycle.

and data memory access. Notice that if our pipelined machine has a clock cycle
that is equal to that of the unpipelined version, the memory system must deliver
five times the bandwidth. This is one cost of higher performance.

Second, the register file is used in the two stages: for reading in ID and for
writing in WB. These uses are distinct, so we simply show the register file in two
places. This does mean that we need to perform two reads and one write every
clock cycle. What if a read and write are to the same register? For now, we ignore
this problem, but we will focus on it in the next section.

Third, Figure 3.3 does not deal with the PC. To start a new instruction every
clock, we must increment and store the PC every clock, and this must be done
during the IF stage in preparation for the next instruction. The problem arises

134 Chapter 3 Pipelining

when we consider the effect of branches, which changes the PC also, but not until
the MEM stage. This is not a problem in our multicycle, unpipelined datapath,
since the PC is written once in the MEM stage. For now, we will organize our
pipelined datapath to write the PC in IF and write either the incremented PC or
the value of the branch target of an earlier branch. This introduces a problem in
how branches are handled that we will explain in the next section and explore in
detail in section 3.5.

Because every pipe stage is active on every clock cycle, all operations in a
pipe stage must complete in one clock cycle and any combination of operations
must be able to occur at once. Furthermore, pipelining the datapath requires that
values passed from one pipe stage to the next must be placed in registers.
Figure 3.4 shows the DLX pipeline with the appropriate registers, gafietine
registers or pipeline latches between each pipeline stage. The registers are
labeled with the names of the stages they connect. Figure 3.4 is drawn so that
connections through the pipeline registers from one stage to another are clear.

IF/ID ID/EX EXIMEM MEM/WB
4 M
u Branch
X taken
Zero? [7
IRe..10
PC M
) R11.15 u
Instruction| IR . X
memory —4 MEM/WB.IR Registers
M Data
By u memory [| M
— X u
[x
extend

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages. The reg-
isters serve to convey values and control information from one stage to the next. We can also think of the PC as a pipeline
register, which sits before the IF stage of the pipeline, leading to one pipeline register for each pipe stage. Recall that the
PC is an edge-triggered register written at the end of the clock cycle; hence there is no race condition in writing the PC. The
selection multiplexer for the PC has been moved so that the PC is written in exactly one stage (IF). If we didn’t move it, there
would be a conflict when a branch occurred, since two instructions would try to write different values into the PC. Most of
the datapaths flow from left to right, which is from earlier in time to later. The paths flowing from right to left (which carry the
register write-back information and PC information on a branch) introduce complications into our pipeline, which we will
spend much of this chapter overcoming.

3.2 The Basic Pipeline for DLX 135

All of the registers needed to hold values temporarily between clock cycles
within one instruction are subsumed into these pipeline registers. The fields of the
instruction register (IR), which is part of the IF/ID register, are labeled when they
are used to supply register names. The pipeline registers carry both data and contro
from one pipeline stage to the next. Any value needed on a later pipeline stage mus
be placed in such a register and copied from one pipeline register to the next, until it
is no longer needed. If we tried to just use the temporary registers we had in our
earlier unpipelined datapath, values could be overwritten before all uses were com-
pleted. For example, the field of a register operand used for a write on a load or
ALU operation is supplied from the MEM/WB pipeline register rather than from
the IF/ID register. This is because we want a load or ALU operation to write the
register designated by that operation, not the register field of the instruction current-
ly transitioning from IF to ID! This destination register field is simply copied from
one pipeline register to the next, until it is needed during the WB stage.

Any instruction is active in exactly one stage of the pipeline at a time; there-
fore, any actions taken on behalf of an instruction occur between a pair of pipeline
registers. Thus, we can also look at the activities of the pipeline by examining
what has to happen on any pipeline stage depending on the instruction type. Fig-
ure 3.5 shows this view. Fields of the pipeline registers are named so as to show
the flow of data from one stage to the next. Notice that the actions in the first two
stages are independent of the current instruction type; they must be independent
because the instruction is not decoded until the end of the ID stage. The IF activity
depends on whether the instruction in EX/MEM is a taken branch. If so, then the
branch target address of the branch instruction in EX/MEM is written into the PC
at the end of IF; otherwise the incremented PC will be written back. (As we said
earlier, this effect of branches leads to complications in the pipeline that we deal
with in the next few sections.) The fixed-position encoding of the register source
operands is critical to allowing the registers to be fetched during ID.

To control this simple pipeline we need only determine how to set the control
for the four multiplexers in the datapath of Figure 3.4. The two multiplexers in
the ALU stage are set depending on the instruction type, which is dictated by the
IR field of the ID/EX register. The top ALU input multiplexer is set by whether
the instruction is a branch or not, and the bottom multiplexer is set by whether the
instruction is a register-register ALU operation or any other type of operation.
The multiplexer in the IF stage chooses whether to use the value of the incre-
mented PC or the value of the EXMEM.ALUOutput (the branch target) to write
into the PC. This multiplexer is controlled by the field EX/MEM.cond. The
fourth multiplexer is controlled by whether the instruction in the WB stage is a
load or a ALU operation. In addition to these four multiplexers, there is one addi-
tional multiplexer needed that is not drawn in Figure 3.4, but whose existence is
clear from looking at the WB stage of an ALU operation. The destination register
field is in one of two different places depending on the instruction type (register-
register ALU versus either ALU immediate or load). Thus, we will need a multi-
plexer to choose the correct portion of the IR in the MEM/WB register to specify
the register destination field, assuming the instruction writes a register.

136 Chapter 3 Pipelining
Stage Any instruction
IF IFID.IR ~ Mem[PC];
IFID.NPC,PC — (if (EX/MEM.opcode == branch) & EX/MEM.cond){EX/IMEM.
ALUOutput} else {PC+4});
ID IDEEXA ~ Regs[IFID.R .10 I;ID/EXB — Regs[IF/ID.R 11.15 I
ID/IEXNPC ~ IF/ID.NPC; ID/EX.IR < IF/ID.R;
IDEXIMm « (IFIDIR 1) ##FIDIR 16,31 :
ALU instruction Load or store instruction Branch instruction
EX EXMEM.IR ~ ID/EX.IR; EXMEM.IR < ID/EX.IR
EX/MEM.ALUOutput EX/MEM.ALUOutput EX/MEM.ALUOutput
IDIEX.A func ID/IEX.B; ID/EX.A + ID/EX.Imm; ID/EX.NPC+ID/EX.Imm;
or
EX/MEM.ALUOutput
ID/IEX.A op IDIEX.Imm;
EX/MEM.cond - O; EX/IMEM.cond ~ O; EX/MEM.cond
EX/MEM.B- ID/EX.B; (IDIEEX.A 0p0);
MEM MEMMB.R — EXMEM.IR; MEMMWB.IR ~ EXMEM.IR;
MEM/WB.ALUOutput MEM/WB.LMD —
EX/MEM.ALUOutput; Mem[EX/MEM.ALUOutput];
or
Mem[EX/MEM.ALUOutput]
EX/MEM.B;
WB Regs[MEMMWBL.IR 16.20] ~ For load only:
MEM/WB.ALUOutput; RegsiIMEMMWBL.IR 11.15 1 «
or MEM/WB.LMD;
RegsIMEMMWBL.IR 11.15] «
MEM/WB.ALUOutput;

FIGURE 3.5 Events on every pipe stage of the DLX pipeline.

Let’s review the actions in the stages that are specific to

the pipeline organization. In IF, in addition to fetching the instruction and computing the new PC, we store the incremented
PC both into the PC and into a pipeline register (NPC) for later use in computing the branch target address. This structure
is the same as the organization in Figure 3.4, where the PC is updated in IF from one or two sources. In ID, we fetch the
registers, extend the sign of the lower 16 bits of the IR, and pass along the IR and NPC. During EX, we perform an ALU
operation or an address calculation; we pass along the IR and the B register (if the instruction is a store). We also set the
value of cond to 1 if the instruction is a taken branch. During the MEM phase, we cycle the memory, write the PC if needed,
and pass along values needed in the final pipe stage. Finally, during WB, we update the register field from either the ALU
output or the loaded value. For simplicity we always pass the entire IR from one stage to the next, though as an instruction
proceeds down the pipeline, less and less of the IR is needed.

Basic Performance Issues in Pipelining

Pipelining increases the CPU instruction throughput—the number of instructions
completed per unit of time—but it does not reduce the execution time of an indi-
vidual instruction. In fact, it usually slightly increases the execution time of each
instruction due to overhead in the control of the pipeline. The increase in instruc-
tion throughput means that a program runs faster and has lower total execution
time, even though no single instruction runs faster!

3.2 The Basic Pipeline for DLX 137

The fact that the execution time of each instruction does not decrease puts lim-
its on the practical depth of a pipeline, as we will see in the next section. In addi-
tion to limitations arising from pipeline latency, limits arise from imbalance
among the pipe stages and from pipelining overhead. Imbalance among the pipe
stages reduces performance since the clock can run no faster than the time neede
for the slowest pipeline stage. Pipeline overhead arises from the combination of
pipeline register delay and clock skew. The pipeline registers add setup time,
which is the time that a register input must be stable before the clock signal that
triggers a write occurs, plus propagation delay to the clock cycle. Clock skew,
which is maximum delay between when the clock arrives at any two registers,
also contributes to the lower limit on the clock cycle. Once the clock cycle is as
small as the sum of the clock skew and latch overhead, no further pipelining is
useful, since there is no time left in the cycle for useful work.

EXAMPLE Consider the unpipelined machine in the previous section. Assume that it
has 10-ns clock cycles and that it uses four cycles for ALU operations and
branches and five cycles for memory operations. Assume that the relative
frequencies of these operations are 40%, 20%, and 40%, respectively.
Suppose that due to clock skew and setup, pipelining the machine adds
1 ns of overhead to the clock. Ignoring any latency impact, how much
speedup in the instruction execution rate will we gain from a pipeline?

ANSWER The average instruction execution time on the unpipelined machine is

Average instruction execution time = Clock cycle x Average CPI

10 ns x ((40% + 20%) x 4 + 40% x 5)
10 nsx4.4

= 44 ns

In the pipelined implementation, the clock must run at the speed of the
slowest stage plus overhead, which will be 10 + 1 or 11 ns; this is the av-
erage instruction execution time. Thus, the speedup from pipelining is

Average instruction time unpipelined
Average instruction time pipelined
- 44 ns

11ns

Speedup from pipelining =
= 4 times

The 1-ns overhead essentially establishes a limit on the effectiveness of
pipelining. If the overhead is not affected by changes in the clock cycle,
Amdahl's Law tells us that the overhead limits the speedup. .

Alternatively, if our base machine already has a CPI of 1 (with a longer clock
cycle), then pipelining will enable us to have a shorter clock cycle. The datapath
of the previous section can be made into a single-cycle datapath by simply re-
moving the latches and letting the data flow from one cycle of execution to the
next. How would the speedup of the pipelined version compare to the single-
cycle machine?

138

Chapter 3 Pipelining

EXAMPLE

ANSWER

Assume that the times required for the five functional units, which operate
in each of the five cycles, are as follows: 10 ns, 8 ns, 10 ns, 10 ns, and 7
ns. Assume that pipelining adds 1 ns of overhead. Find the speedup ver-
sus the single-cycle datapath.

Since the unpipelined machine executes all instructions in a single clock
cycle, its average time per instruction is simply the clock cycle time. The

clock cycle time is equal to the sum of the times for each step in the exe-
cution:

Average instruction execution time = 10+8+10 +10 +7
= 45ns

The clock cycle time on the pipelined machine must be the largest time
for any stage in the pipeline (10 ns) plus the overhead of 1 ns, for a total
of 11 ns. Since the CPl is 1, this yields an average instruction execution
time of 11 ns. Thus,

Average instruction time unpipelined
Average instruction time pipelined
_45ns
11ns

Speedup from pipelining

= 4.1 times

Pipelining can be thought of as improving the CPI, which is what we typi-
cally do, as increasing the clock rate—especially compared to another
pipelined machine, or sometimes as doing both. .

Because the latches in a pipelined design can have a significant impact on the
clock speed, designers have looked for latches that permit the highest possible
clock rate. The Earle latch (invented by J. G. Earle [1965]) has three properties
that make it especially useful in pipelined machines. First, it is relatively insen-
sitive to clock skew. Second, the delay through the latch is always a constant two-
gate delay, avoiding the introduction of skew in the data passing through the
latch. Finally, two levels of logic can be performed in the latch without increasing
the latch delay time. This means that two levels of logic in the pipeline can be
overlapped with the latch, so the overhead from the latch can be hidden. We will
not be analyzing the pipeline designs in this chapter at this level of detail. The in-
terested reader should see Kunkel and Smith [1986].

The pipeline we now have for DLX would function just fine for integer
instructions if every instruction were independent of every other instruction in the
pipeline. In reality, instructions in the pipeline can depend on one another; this is
the topic of the next section. The complications that arise in the floating-point
pipeline will be treated in section 3.7, and section 3.9 will look at a complete real
pipeline.

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 139

3.3

The Major Hurdle of Pipelining—
Pipeline Hazards

There are situations, calléthzards that prevent the next instruction in the in-
struction stream from executing during its designated clock cycle. Hazards re-
duce the performance from the ideal speedup gained by pipelining. There are
three classes of hazards:

1. Structural hazardsarise from resource conflicts when the hardware cannot
support all possible combinations of instructions in simultaneous overlapped
execution.

2. Data hazardsarise when an instruction depends on the results of a previous
instruction in a way that is exposed by the overlapping of instructions in the
pipeline.

3. Control hazardsarise from the pipelining of branches and other instructions
that change the PC.

Hazards in pipelines can make it necessastath the pipeline. In Chapter 1,
we mentioned that the processor could stall on an event such as a cache mis:s
Stalls arising from hazards in pipelined machines are more complex than the sim-
ple stall for a cache miss. Eliminating a hazard often requires that some instruc-
tions in the pipeline be allowed to proceed while others are delayed. For the
pipelines we discuss in this chapter, when an instruction is stalled, all instructions
issued later than the stalled instruction—and hence not as far along in the
pipeline—are also stalled. Instructions isswdlier than the stalled instruc-
tion—and hence farther along in the pipeline—must continue, since otherwise
the hazard will never clear. As a result, no new instructions are fetched during the
stall. In contrast to this process of stalling only a portion of the pipeline, a cache
miss stallsall the instructions in the pipeline both before and after the instruction
causing the miss. (For the simple pipelines of this chapter there is no advantage
in selecting stalling instructions on a cache miss, but in future chapters we will
examine pipelines and caches that reduce cache miss costs by selectively stalling
on a cache miss.) We will see several examples of how pipeline stalls operate in
this section—don’t worry, they aren’t as complex as they might sound!

Performance of Pipelines with Stalls

A stall causes the pipeline performance to degrade from the ideal performance.
Let’s look at a simple equation for finding the actual speedup from pipelining,
starting with the formula from the previous section.

140

Chapter 3 Pipelining

Speedup from pipelining

Average instruction time unpipelined
Average instruction time pipelined
_ CPI unpipelined x Clock cycle unpipelined
CPI pipelined x Clock cycle pipelined
_ CPl unpipelined « Clock cycle unpipelined
CPI pipelined Clock cycle pipelined

Speedup from pipelining

Remember that pipelining can be thought of as decreasing the CPI or the clock
cycle time. Since it is traditional to use the CPI to compare pipelines, let's start

with that assumption. The ideal CPI on a pipelined machine is almost always 1.

Hence, we can compute the pipelined CPI:

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction
1 + Pipeline stall clock cycles per instruction

If we ignore the cycle time overhead of pipelining and assume the stages are per-

fectly balanced, then the cycle time of the two machines can be equal, leading to

CPI unpipelined
1 + Pipeline stall cycles per instruction

Speedup =

One important simple case is where all instructions take the same number of cy-
cles, which must also equal the number of pipeline stages (also calldgpthe

of the pipeling In this case, the unpipelined CPI is equal to the depth of the pipe-
line, leading to

Pipeline depth

Speedup = T - -
peedup 1 + Pipeline stall cycles per instruction

If there are no pipeline stalls, this leads to the intuitive result that pipelining can
improve performance by the depth of the pipeline.

Alternatively, if we think of pipelining as improving the clock cycle time, then
we can assume that the CPI of the unpipelined machine, as well as that of the
pipelined machine, is 1. This leads to

CPI unpipelined < Clock cycle unpipelined
CPI pipelined Clock cycle pipelined
1 y Clock cycle unpipelined
1 + Pipeline stall cycles per instruction ~ Clock cycle pipelined

In cases where the pipe stages are perfectly balanced and there is no overhead,
the clock cycle on the pipelined machine is smaller than the clock cycle of the un-
pipelined machine by a factor equal to the pipelined depth:

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 141

Clock cycle unpipelined
Pipeline depth
Clock cycle unpipelined
Clock cycle pipelined

Clock cycle pipelined

Pipeline depth =

This leads to the following:

Speedun from pielining = 1 » Clock cycle unpipelined
P P PIp g 1 + Pipeline stall cycles per instruction ~ Clock cycle pipelined
1

= AT - — x Pipelin th
1 + Pipeline stall cycles per instruction peline dep

Thus, if there are no stalls, the speedup is equal to the number of pipeline stages
matching our intuition for the ideal case.

Structural Hazards

When a machine is pipelined, the overlapped execution of instructions requires
pipelining of functional units and duplication of resources to allow all possible
combinations of instructions in the pipeline. If some combination of instructions
cannot be accommodated because of resource conflicts, the machine is said t
have astructural hazard The most common instances of structural hazards arise
when some functional unit is not fully pipelined. Then a sequence of instructions
using that unpipelined unit cannot proceed at the rate of one per clock cycle. An-
other common way that structural hazards appear is when some resource has nc
been duplicated enough to allow all combinations of instructions in the pipeline
to execute. For example, a machine may have only one register-file write port, but
under certain circumstances, the pipeline might want to perform two writes in a
clock cycle. This will generate a structural hazard. When a sequence of instruc-
tions encounters this hazard, the pipeline will stall one of the instructions until
the required unit is available. Such stalls will increase the CPI from its usual ideal
value of 1.

Some pipelined machines have shared a single-memory pipeline for data and
instructions. As a result, when an instruction contains a data-memory reference, it
will conflict with the instruction reference for a later instruction, as shown in
Figure 3.6. To resolve this, we stall the pipeline for one clock cycle when the data
memory access occurs. Figure 3.7 shows our pipeline datapath figure with the
stall cycle added. A stall is commonly callegipeline bubbleor justbubble
since it floats through the pipeline taking space but carrying no useful work. We
will see another type of stall when we talk about data hazards.

Rather than draw the pipeline datapath every time, designers often just indi-
cate stall behavior using a simpler diagram with only the pipe stage names, as in
Figure 3.8. The form of Figure 3.8 shows the stall by indicating the cycle when
no action occurs and simply shifting instruction 3 to the right (which delays its

142 Chapter 3 Pipelining
Time (in clock cycles)
cc1 ccz ccs ¢ cca i ccs i cce ioccv i ccs
Load Mem
Instruction 1
Instruction 2

Instruction 3

Instruction 4

FIGURE 3.6 A machine with only one memory port will generate a conflict whenever a memory reference occurs.
In this example the load instruction uses the memory for a data access at the same time instruction 3 wants to fetch an in-

struction from memory.

execution start and finish by one cycle). The effect of the pipeline bubble is actu-
ally to occupy the resources for that instruction slot as it travels through the pipe-
line, just as Figure 3.7 shows. Although Figure 3.7 shows how the stall is actually
implemented, the performance impact indicated by the two figures is the same:
Instruction 3 does not complete until clock cycle 9, and no instruction completes
during clock cycle 8.

3.3 The Major Hurdle of Pipelining—Pipeline Hazards

143

Load

Instruction 1

Instruction 2

Stall

Instruction 3

FIGURE 3.7 The structural hazard causes pipeline bubbles to be inserted.
during clock cycle 8, when instruction 3 would normally have finished. Instruction 1 is assumed to not be a load or store;
otherwise, instruction 3 cannot start execution.

Time (in clock cycles)

CC1

Mem

CC2

CC3

Mem

CC4

CC5

CC6

cc7 : ccs

The effect is that no instruction will finish

144 Chapter 3 Pipelining

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10

Load instruction IF ID EX MEM WB

Instructioni + 1 IF ID EX MEM WB

Instructioni + 2 IF ID EX MEM WB

Instructioni + 3 stall IF ID EX MEM WB

Instructioni + 4 IF ID EX MEM WB

Instructioni + 5 IF ID EX MEM

Instructioni + 6 IF ID EX
FIGURE 3.8 A pipeline stalled for a structural hazard—a load with one memory port. As shown here, the load instruc-

tion effectively steals an instruction-fetch cycle, causing the pipeline to stall—no instruction is initiated on clock cycle 4 (which
normally would initiate instruction / + 3). Because the instruction being fetched is stalled, all other instructions in the pipeline
before the stalled instruction can proceed normally. The stall cycle will continue to pass through the pipeline, so that no in-
struction completes on clock cycle 8. Sometimes these pipeline diagrams are drawn with the stall occupying an entire hori-
zontal row and instruction 3 being moved to the next row; in either case, the effect is the same, since instruction 3 does not
begin execution until cycle 5. We use the form above, since it takes less space.

EXAMPLE Let’'s see how much the load structural hazard might cost. Suppose that
data references constitute 40% of the mix, and that the ideal CPI of the
pipelined machine, ignoring the structural hazard, is 1. Assume that the
machine with the structural hazard has a clock rate that is 1.05 times high-
er than the clock rate of the machine without the hazard. Disregarding any
other performance losses, is the pipeline with or without the structural
hazard faster, and by how much?

ANSWER There are several ways we could solve this problem. Perhaps the simplest
is to compute the average instruction time on the two machines:

Average instruction time €PI x Clock cycle time

Since it has no stalls, the average instruction time for the ideal machine is
simply the Clock cycle time;y,. The average instruction time for the ma-
chine with the structural hazard is

Average instruction time = CPI x Clock cycle time
Clock cycle time
1.05

ideal

(1+04x1)x

1.3 x Clock cycle time;yqq

Clearly, the machine without the structural hazard is faster; we can use
the ratio of the average instruction times to conclude that the machine
without the hazard is 1.3 times faster.

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 145

EXAMPLE

ANSWER

As an alternative to this structural hazard, the designer could provide
a separate memory access for instructions, either by splitting the cache
into separate instruction and data caches, or by using a set of buffers,
usually called instruction buffers, to hold instructions. Both the split cache
and instruction buffer ideas are discussed in Chapter 5. .

If all other factors are equal, a machine without structural hazards will always
have a lower CPI. Why, then, would a designer allow structural hazards? There
are two reasons: to reduce cost and to reduce the latency of the unit. Pipelining all
the functional units, or duplicating them, may be too costly. For example, ma-
chines that support both an instruction and a data cache access every cycle (tc
prevent the structural hazard of the above example) require twice as much total
memory bandwidth and often have higher bandwidth at the pins. Likewise, fully
pipelining a floating-point multiplier consumes lots of gates. If the structural haz-
ard would not occur often, it may not be worth the cost to avoid it. It is also usual-
ly possible to design an unpipelined unit, or one that isn’t fully pipelined, with a
somewhat shorter total delay than a fully pipelined unit. The shorter latency
comes from the lack of pipeline registers that introduce overhead. For example,
both the CDC 7600 and the MIPS R2010 floating-point unit choose shorter laten-
cy (fewer clocks per operation) versus full pipelining. As we will see shortly, re-
ducing latency has other performance benefits and may overcome the disadvantage
of the structural hazard.

Many recent machines do not have fully pipelined floating-point units. For
example, suppose we had an implementation of DLX with a floating-point
multiply unit but no pipelining. Assume the multiplier could accept a new
multiply operation every five clock cycles. (This rate is called the repeat or
initiation interval.) Will this structural hazard have a large or small perfor-
mance impact on mdljdp2 running on DLX? For simplicity, assume that
the floating-point multiplies are uniformly distributed.

From Chapter 2 we find that floating-point multiply has a frequency of
14% in mdljdp2. Our proposed pipeline can handle up to a 20% frequency
of floating-point multiplies—one every five clock cycles. This means that
the performance benefit of fully pipelining the floating-point multiply on
mdljdp2 is likely to be limited, as long as the floating-point multiplies are
not clustered but are distributed uniformly. In the best case, multiplies are
overlapped with other operations, and there is no performance penalty at
all. In the worst case, the multiplies are all clustered with no intervening
instructions, and 14% of the instructions take 5 cycles each. Assuming a
base CPI of 1, this amounts to an increase of 0.7 in the CPI.

146

Chapter 3 Pipelining

In practice, examining the performance of mdljdp2 on a machine with
a five-cycle-deep FP multiply pipeline shows that this structural hazard
increases execution time by less than 3%. One reason this loss is so low
is that data hazards (the topic of the next section) cause the pipeline to
stall, preventing multiply instructions that might cause structural hazards
from being initiated. Of course, other benchmarks make heavier use of
floating-point multiply or have fewer data hazards, and thus would show a
larger impact. In the rest of this chapter we will examine the contributions
of these different types of stalls in the DLX pipeline. .

34 | Data Hazards

A major effect of pipelining is to change the relative timing of instructions by
overlapping their execution. This introduces data and control hazards. Data haz-
ards occur when the pipeline changes the order of read/write accesses to oper-
ands so that the order differs from the order seen by sequentially executing
instructions on an unpipelined machine. Consider the pipelined execution of
these instructions:

ADD R1,R2,R3
SuB R4,R1,R5
AND R6,R1,R7
OR R8,R1,R9
XOR R10,R1,R11

All the instructions after thaDDuse the result of th&DDinstruction. As shown in
Figure 3.9, theADDinstruction writes the value of R1 in the WB pipe stage, but
the SUBInstruction reads the value during its ID stage. This problem is called a
data hazard Unless precautions are taken to prevent it S@instruction will

read the wrong value and try to use it. In fact, the value used IspBiastruc-

tion is not even deterministic: Though we might think it logical to assume that
SuUBwould always use the value of R1 that was assigned by an instruction prior to
ADD this is not always the case. If an interrupt should occur betweabiznd
SuBinstructions, the WB stage of ta®@Dwill complete, and the value of R1 at
that point will be the result of th&DD This unpredictable behavior is obviously
unacceptable.

The AND instruction is also affected by this hazard. As we can see from
Figure 3.9, the write of R1 does not complete until the end of clock cycle 5. Thus,
the ANDinstruction that reads the registers during clock cycle 4 will receive the
wrong results.

The XORinstruction operates properly, because its register read occurs in
clock cycle 6, after the register write. TBRinstruction can also be made to
operate without incurring a hazard by a simple implementation technique, im-
plied in our pipeline diagrams. The technique is to perform the register file reads
in the second half of the cycle and the writes in the first half. This technique,

3.4 Data Hazards 147

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CC6

ADD R1,R2,R3 IM

SUB R4, R1, R5 IM © Reg —|: DM [Reg :

Program execution order (in instructions)

AND R6, R1, R7 IM : Reg | DM

ORRS8, R1, R9 IM

XOR R10, R1, R11

FIGURE 3.9 The use of the result of the ADDinstruction in the next three instructions causes a hazard, since the
register is not written until after those instructions read it.

which is hinted at in earlier figures by placing the dashed box around the register
file, allows theORinstruction in the example in Figure 3.9 to execute correctly.

The next subsection discusses a technique to eliminate the stalls for the hazarc
involving theSuBandANDinstructions.

Minimizing Data Hazard Stalls By Forwarding

The problem posed in Figure 3.9 can be solved with a simple hardware technique
called forwarding (also calledbypassingand sometimeshort-circuiting. The

key insight in forwarding is that the result is not really needed bguBentil af-

ter theADDactually produces it. If the result can be moved from wherabine

148

Chapter 3 Pipelining

produces it, the EX/MEM register, to where t8gB needs it, the ALU input
latches, then the need for a stall can be avoided. Using this observation, forward-
ing works as follows:

1. The ALU result from the EX/MEM register is always fed back to the ALU
input latches.

2. If the forwarding hardware detects that the previous ALU operation has writ-
ten the register corresponding to a source for the current ALU operation, con-
trol logic selects the forwarded result as the ALU input rather than the value
read from the register file.

Notice that with forwarding, if theUBis stalled, theADDwill be completed and
the bypass will not be activated. This is also true for the case of an interrupt be-
tween the two instructions.

As the example in Figure 3.9 shows, we need to forward results not only from
the immediately previous instruction, but possibly from an instruction that started
two cycles earlier. Figure 3.10 shows our example with the bypass paths in place
and highlighting the timing of the register read and writes. This code sequence
can be executed without stalls.

Forwarding can be generalized to include passing a result directly to the func-
tional unit that requires it: A result is forwarded from the output of one unit to the
input of another, rather than just from the result of a unit to the input of the same
unit. Take, for example, the following sequence:

ADD RLR2R3
LW R4,0(R1)
sw 12(R1),R4

To prevent a stall in this sequence, we would need to forward the values of R1
and R4 from the pipeline registers to the ALU and data memory inputs.
Figure 3.11 shows all the forwarding paths for this example. In DLX, we may re-
quire a forwarding path from any pipeline register to the input of any functional
unit. Because the ALU and data memory both accept operands, forwarding paths
are needed to their inputs from both the ALU/MEM and MEM/WB registers. In
addition, DLX uses a zero detection unit that operates during the EX cycle, and
forwarding to that unit will be needed as well. Later in this section we will ex-
plore all the necessary forwarding paths and the control of those paths.

3.4 Data Hazards 149

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CC6

ADD R1,R2,R3| IM

SUB R4, R1, RS IM " Re : DE] Reg
+RL, : Reg ': : : M M :

Program execution order (in instructions)

I -
AND R6, R1, R7 M © Reg —I: DM

ALU

OR RS, R1, R9 IM : Reg

XOR R10, R1, R11

FIGURE 3.10 A set of instructions that depend on the ~ ADDresult use forwarding paths to avoid the data hazard.

The inputs for the SUBand ANDinstructions forward from the EX/MEM and the MEM/WB pipeline registers, respectively, to
the first ALU input. The ORreceives its result by forwarding through the register file, which is easily accomplished by reading
the registers in the second half of the cycle and writing in the first half, as the dashed lines on the registers indicate. Notice
that the forwarded result can go to either ALU input; in fact, both ALU inputs could use forwarded inputs from either the same
pipeline register or from different pipeline registers. This would occur, for example, if the ANDinstruction was AND
R6, R1, R4

150 Chapter 3 Pipelining

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CCé6

ADD R1,R2,R3 IM

LW R4, O(R1)

SW 12(R1), R4

-~ Program execution order (in instructions)

FIGURE 3.11 Stores require an operand during MEM, and forwarding of that operand is shown

here. The result of the load is forwarded from the memory output in MEM/WB to the memory input to be
stored. In addition, the ALU output is forwarded to the ALU input for the address calculation of both the load
and the store (this is no different than forwarding to another ALU operation). If the store depended on an
immediately preceding ALU operation (not shown above), the result would need to be forwarded to prevent
a stall.

Data Hazard Classification

A hazard is created whenever there is a dependence between instructions, and
they are close enough that the overlap caused by pipelining would change the or-
der of access to an operand. Our example hazards have all been with register op-
erands, but it is also possible for a pair of instructions to create a dependence by
writing and reading the same memory location. In our DLX pipeline, however,
memory references are always kept in order, preventing this type of hazard from
arising. Cache misses could cause the memory references to get out of order if we
allowed the processor to continue working on later instructions, while an earlier
instruction that missed the cache was accessing memory. For the DLX pipeline
we stall the entire pipeline on a cache miss, effectively making the instruction

3.4 Data Hazards 151

that contained the miss run for multiple clock cycles. In the next chapter, we will
discuss machines that allow loads and stores to be executed in an order differen
from that in the program, which will introduce new problems. All the data haz-
ards discussed in this chapter involve registers within the CPU.

Data hazards may be classified as one of three types, depending on the orde

of read and write accesses in the instructions. By convention, the hazards are
named by the ordering in the program that must be preserved by the pipeline.
Consider two instructionisandj, with i occurring beforg. The possible data haz-

ards are

RAW (read after write)}— j tries to read a source befarerites it, sg incor-
rectly gets the old value. This is the most common type of hazard and the kind
that we used forwarding to overcome in Figures 3.10 and 3.11.

WAW (write after write)— j tries to write an operand before it is writteniby

The writes end up being performed in the wrong order, leaving the value writ-
ten byi rather than the value written Ilpyin the destination. This hazard is
present only in pipelines that write in more than one pipe stage (or allow an in-
struction to proceed even when a previous instruction is stalled). The DLX in-
teger pipeline writes a register only in WB and avoids this class of hazards. If
we made two changes to the DLX pipeline, WAW hazards would be possible.
First, we could move write back for an ALU operation into the MEM stage,
since the data value is available by then. Second, suppose that the data memor
access took two pipe stages. Here is a sequence of two instructions showing the
execution in this revised pipeline, highlighting the pipe stage that writes the re-
sult:

LW R1,0(R2) IF ID EX MEM1 MEM2 WB
ADD R1,R2,R3 IF ID EX wB

Unless this hazard is avoided, execution of this sequence on this revised pipe-
line will leave the result of the first write (th&) in R1, rather than the result
of the ADD

Allowing writes in different pipe stages introduces other problems, since two
instructions can try to write during the same clock cycle. When we discuss the
DLX FP pipeline (section 3.7), which has both writes in different stages and
different pipeline lengths, we will deal with both write conflicts and WAW
hazards in detail.

WAR (write after read)— j tries to write a destination before it is readiby

soi incorrectly gets the new value. This cannot happen in our example pipeline
because all reads are early (in ID) and all writes are late (in WB). This hazard
occurs when there are some instructions that write results early in the instruc-
tion pipeline, and other instructions that read a source late in the pipeline.

152

Chapter 3 Pipelining

Because of the natural structure of a pipeline, which typically reads values be-
fore it writes results, such hazards are rare. Pipelines for complex instruction
sets that support autoincrement addressing and require operands to be read late
in the pipeline could create a WAR hazard. If we modified the DLX pipeline as

in the above example and also read some operands late, such as the source value
for a store instruction, a WAR hazard could occur. Here is the pipeline timing

for such a potential hazard, highlighting the stage where the conflict occurs:

SW O(R1),R2 IF ID EX MEM1 MEM2 WB
ADD R2,R3,R4 IF ID EX wB

If the SWreads R2 during the second half of its MEM2 stage andlibevrites

R2 during the first half of its WB stage, tBawill incorrectly read and store

the value produced by ti®D In the DLX pipeline, reading all operands from

the register file during ID avoids this hazard; however, in the next chapter, we
will see how these hazards occur more easily when instructions are executed
out of order.

Note that the RARread after readftase is not a hazard.

Data Hazards Requiring Stalls

Unfortunately, not all potential data hazards can be handled by bypassing.
Consider the following sequence of instructions:

LW R1,0(R2)
SUB R4RLR5
AND R6RLR7
OR R8,R1,R9

The pipelined datapath with the bypass paths for this example is shown in
Figure 3.12. This case is different from the situation with back-to-back ALU op-
erations. Theéwinstruction does not have the data until the end of clock cycle 4
(its MEM cycle), while thesuBinstruction needs to have the data by the begin-
ning of that clock cycle. Thus, the data hazard from using the result of a load in-
struction cannot be completely eliminated with simple hardware. As Figure 3.12
shows, such a forwarding path would have to operate backward in time—a capa-
bility not yet available to computer designers! ¥#aforward the result immedi-
ately to the ALU from the MEM/WB registers for use in g&xbDoperation, which
begins two clock cycles after the load. Likewise,@@nstruction has no prob-

lem, since it receives the value through the register file. F@@UB@struction,

the forwarded result arrives too late—at the end of a clock cycle, when it is need-
ed at the beginning.

3.4 Data Hazards 153

<«———— Program execution order (in instructions)

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

ORR8, R1, R9

FIGURE 3.12 The load instruction can bypass its results to the
that would mean forwarding the result in “negative time.”

Time (in clock cycles)

CC1 CcC3 CC4 CC5
IM —I: DM || Reg

SUB since

ANDand ORinstructions, but not to the

The load instruction has a delay or latency that cannot be eliminated by for-
warding alone. Instead, we need to add hardware, cajigubhne interlock to
preserve the correct execution pattern. In genenaipeline interlockdetects a
hazard and stalls the pipeline until the hazard is cleared. In this case, the interlock
stalls the pipeline, beginning with the instruction that wants to use the data until
the source instruction produces it. This pipeline interlock introduces a stall or
bubble, just as it did for the structural hazard in section 3.3. The CPI for the
stalled instruction increases by the length of the stall (one clock cycle in this
case). The pipeline with the stall and the legal forwarding is shown in
Figure 3.13. Because the stall causes the instructions starting wigugte
move one cycle later in time, the forwarding to #idDinstruction now goes
through the register file, and no forwarding at all is needed faRiTestruction.

The insertion of the bubble causes the number of cycles to complete this se-
guence to grow by one. No instruction is started during clock cycle 4 (and none

154 Chapter 3 Pipelining

Time (in clock cycles)

CC1 CcC2 cCs3 CcC4 CC5 CcC6

© Reg —I: DM 1% AEQ
| C —
SUB R4, R, R5 M © Reg Bubble) —|: DM [
- |
AND R6, R1, R7 IM Bubble * Reg

LW R1,0(R2)| IM

Program execution order (in instructions)

-
OR R8, R1, R9 Bubble IM © Reg

FIGURE 3.13 The load interlock causes a stall to be inserted at clock cycle 4, delaying the SUBinstruction and
those that follow by one cycle. This delay allows the value to be successfully forwarded on the next clock cycle.

finishes during cycle 6). Figure 3.14 shows the pipeline before and after the stall us-
ing a diagram containing only the pipeline stages. We will make extensive use of this
more concise form for showing interlocks and stalls in this chapter and the next.

LW R1,0(R2) IF ID EX MEM WB

SUB R4,R1,R5 IF ID EX MEM WB

AND R6,R1,R7 IF ID EX MEM WB

OR R8,R1,R9 IF ID EX MEM WB

LW R1,0(R2) IF ID EX MEM WB

SUB R4,R1,R5 IF ID stall EX MEM WB

AND R6,R1,R7 IF stall ID EX MEM WB

OR R8,R1,R9 stall IF ID EX MEM WB

FIGURE 3.14 In the top half, we can see why a stall is needed: the MEM cycle of the load produces a value that is
needed in the EX cycle of the SUB which occurs at the same time. This problem is solved by inserting a stall, as shown
in the bottom half.

3.4 Data Hazards 155

EXAMPLE Suppose that 30% of the instructions are loads, and half the time the in-
struction following a load instruction depends on the result of the load. If
this hazard creates a single-cycle delay, how much faster is the ideal pipe-
lined machine (with a CPI of 1) that does not delay the pipeline than the
real pipeline? Ignore any stalls other than pipeline stalls.

ANSWER The ideal machine will be faster by the ratio of the CPIs. The CPI for an
instruction following a load is 1.5, since it stalls half the time. Because
loads are 30% of the mix, the effective CPI is (0.7 x 1 + 0.3 x 1.5) = 1.15.
This means that the ideal machine is 1.15 times faster. .

In the next subsection we consider compiler techniques to reduce these penal-
ties. After that, we look at how to implement hazard detection, forwarding, and
interlocks.

Compiler Scheduling for Data Hazards

Many types of stalls are quite frequent. The typical code-generation pattern for a
statement such as A = B + C produces a stall for a load of the second data value
(C). Figure 3.15 shows that the store of A need not cause another stall, since the
result of the addition can be forwarded to the data memory for use by the store.

Rather than just allow the pipeline to stall, the compiler could try to schedule
the pipeline to avoid these stalls by rearranging the code sequence to eliminate
the hazard. For example, the compiler could try to avoid generating code with a
load followed by the immediate use of the load destination register. This tech-
nique, calledpipeline schedulingr instruction schedulingwas first used in the
1960s and became an area of major interest in the 1980s, as pipelined machine:
became more widespread.

LWR1,B IF ID EX MEM wB

LWR2,C IF ID EX MEM wB

ADD R3,R1,R2 IF ID stall EX MEM WB

SWARS3 IF stall ID EX MEM WB

FIGURE 3.15 The DLX code sequence for A=B + C. The ADDinstruction must be stalled to allow the load of C to com-
plete. The SWheed not be delayed further because the forwarding hardware passes the result from the MEM/WB directly to
the data memory input for storing.

EXAMPLE Generate DLX code that avoids pipeline stalls for the following sequence:

a=b+c;
d=e-f;

Assume loads have a latency of one clock cycle.

156 Chapter 3 Pipelining

ANSWER Here is the scheduled code:
LW Rb,b
LW Rc,c
LW Re,e ; swap instructions to avoid stall
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra ; store/load exchanged to avoid stall
SuB Rd,Re,Rf
SwW d,Rd

Both load interlocks (LWRc, ¢ to ADDRa, Rb, Rc and LWRf, f to

SUBRd, Re, Rf) have been eliminated. There is a dependence between
the ALU instruction and the store, but the pipeline structure allows the re-
sult to be forwarded. Notice that the use of different registers for the first
and second statements was critical for this schedule to be legal. In partic-
ular, if the variable e was loaded into the same register as b or c, this
schedule would be illegal. In general, pipeline scheduling can increase
the register count required. In the next chapter, we will see that this in-
crease can be substantial for machines that can issue multiple instruc-
tions in one clock. .

Many modern compilers try to use instruction scheduling to improve pipeline
performance. In the simplest algorithms, the compiler simply schedules using
other instructions in the same basic blockasic blockis a straight-line code se-
guence with no transfers in or out, except at the beginning or end. Scheduling
such code sequences is easy, since we know that every instruction in the block is
executed if the first one is. We can simply make a graph of the dependences
among the instructions and order the instructions so as to minimize the stalls. For
a simple pipeline like the DLX integer pipeline with only short latencies (the only
delay is one cycle on loads), a scheduling strategy focusing on basic blocks is ad-
equate. Figure 3.16 shows the frequency that stalls are required for load results,
assuming a single-cycle delay for loads. As you can see, this process is more ef-
fective for floating-point programs that have significant amounts of parallelism
among instructions. As pipelining becomes more extensive and the effective
pipeline latencies grow, more ambitious scheduling schemes are needed; these
are discussed in detail in the next chapter.

Implementing the Control for the DLX Pipeline

The process of letting an instruction move from the instruction decode stage (ID)
into the execution stage (EX) of this pipeline is usually caflettuction issug

an instruction that has made this step is said to isaued For the DLX integer
pipeline, all the data hazards can be checked during the ID phase of the pipeline.

3.4 Data Hazards 157

45%

41%

40%

35%

30%

25%

Fraction of loads that cause a stall 20% 20%

20%

15% [
10% 10%

10%

5%

0%

o X O L N ¢ & $
FF & ¢TI
00@ & R & € 9

Benchmark

FIGURE 3.16 Percentage of the loads that result in a stall with the DLX pipeline. This
chart shows the frequency of stalls remaining in scheduled code that was globally optimized
before scheduling. Global optimization actually makes scheduling relatively harder because
there are fewer candidates for scheduling into delay slots, as we discuss in Fallacies and Pit-
falls. The pipeline slot after a load is often called the load delay or delay slot. In general, it is
easier to schedule the delay slots in FP programs, since they are more regular and the anal-
ysis is easier. Hence fewer loads stall in the FP programs: an average of 13% of the loads
versus 25% on the integer programs. The actual performance impact depends on the load
frequency, which varies from 19% to 34% with an average of 24%.The contribution to CPI
runs from 0.01 cycles per instruction to 0.15 cycles per instruction.

If a data hazard exists, the instruction is stalled before it is issued. Likewise, we
can determine what forwarding will be needed during ID and set the appropriate
controls then. Detecting interlocks early in the pipeline reduces the hardware
complexity because the hardware never has to suspend an instruction that has up
dated the state of the machine, unless the entire machine is stalled. Alternatively,
we can detect the hazard or forwarding at the beginning of a clock cycle that uses
an operand (EX and MEM for this pipeline). To show the differences in these two
approaches, we will show how the interlock for a RAW hazard with the source
coming from a load instruction (calledaad interlock can be implemented by a
check in ID, while the implementation of forwarding paths to the ALU inputs can
be done during EX. Figure 3.17 lists the variety of circumstances that we must
handle.

158

Chapter 3 Pipelining

Example code
Situation sequence Action
No dependence LW R1,45(R2) No hazard possible because no dependence
ADD R5,R6,R7 exists on R1 in the immediately following
SUB R8,R6,R7 three instructions.
OR R9,R6,R7
Dependence LW R1,45(R2) Comparators detect the use of R1 inA®
requiring stall ADD R5, R1,R7 and stall theADD(andSUBandOR before the
SUB R8,R6,R7 ADDbegins EX.
OR R9,R6,R7
Dependence LW R1,45(R2) Comparators detect use of R1S0Band for-
overcome by ADD R5,R6,R7 ward result of load to ALU in time f@UBto
forwarding SUB RS, R1,R7 begin EX.
OR R9,R6,R7
Dependence LW R1,45(R2) No action required because the read of R1 by
with accesses in ADD R5,R6,R7 ORoccurs in the second half of the ID phase,
order SUB R8,R6,R7 while the write of the loaded data occurred |in
ORR9, R1,R7 the first half.

FIGURE 3.17 Situations that the pipeline hazard detection hardware can see by com-

paring the destination and sources of adjacent instructions.

This table indicates that the

only comparison needed is between the destination and the sources on the two instructions
following the instruction that wrote the destination. In the case of a stall, the pipeline depen-
dences will look like the third case once execution continues. Of course hazards that involve
RO can be ignored since the register always contains 0, and the test above could be extended

to do this.

Let’s start with implementing the load interlock. If there is a RAW hazard with

the source instruction being a load, the load instruction will be in the EX stage
when an instruction that needs the load data will be in the ID stage. Thus, we can
describe all the possible hazard situations with a small table, which can be direct-
ly translated to an implementation. Figure 3.18 shows a table that detects all load
interlocks when the instruction using the load result is in the ID stage.

Opcode field of ID/EX

(ID/IEX.IR g..B Opcode field of IF/ID (IF/ID.IR .5 Matching operand fields

Load Register-register ALU ID/EX.IR ..15==IF/ID.IRg.. 10
Load Register-register ALU ID/EX.IR . .15==IF/ID.IR11..15
Load Load, store, ALU immediate, or branch ID/EX4IR 15==IF/ID.IRg_.10

FIGURE 3.18 The logic to detect the need for load interlocks during the ID stage of an instruction requires three

comparisons.

Lines 1 and 2 of the table test whether the load destination register is one of the source registers for a

register-register operation in ID. Line 3 of the table determines if the load destination register is a source for a load or store
effective address, an ALU immediate, or a branch test. Remember that the IF/ID register holds the state of the instruction in
ID, which potentially uses the load result, while ID/EX holds the state of the instruction in EX, which is the potential load

instruction.

3.4 Data Hazards 159

Once a hazard has been detected, the control unit must insert the pipeline stall
and prevent the instructions in the IF and ID stages from advancing. As we said in
section 3.2, all the control information is carried in the pipeline registers. (Carry-
ing the instruction along is enough, since all control is derived from it.) Thus,
when we detect a hazard we need only change the control portion of the ID/EX
pipeline register to all 0s, which happens to be a no-op (an instruction that does
nothing, such asDD RO,RO,R0). In addition, we simply recirculate the contents
of the IF/ID registers to hold the stalled instruction. In a pipeline with more com-
plex hazards, the same ideas would apply: We can detect the hazard by compar
ing some set of pipeline registers and shift in no-ops to prevent erroneous
execution.

Implementing the forwarding logic is similar, though there are more cases to
consider. The key observation needed to implement the forwarding logic is that
the pipeline registers contain both the data to be forwarded as well as the source
and destination register fields. All forwarding logically happens from the ALU or
data memory output to the ALU input, the data memory input, or the zero detec-
tion unit. Thus, we can implement the forwarding by a comparison of the destina-
tion registers of the IR contained in the EXMEM and MEM/WB stages against
the source registers of the IR contained in the ID/EX and EX/MEM registers.
Figure 3.19 shows the comparisons and possible forwarding operations where the
destination of the forwarded result is an ALU input for the instruction currently
in EX. The Exercises ask you to add the entries when the result is forwarded to
the data memory. The last possible forwarding destination is the zero detect unit,
whose forwarding paths look the same as those that are needed when the destinz
tion instruction is an ALU immediate.

In addition to the comparators and combinational logic that we need to deter-
mine when a forwarding path needs to be enabled, we also need to enlarge the
multiplexers at the ALU inputs and add the connections from the pipeline regis-
ters that are used to forward the results. Figure 3.20 shows the relevant segment
of the pipelined datapath with the additional multiplexers and connections in
place.

For DLX, the hazard detection and forwarding hardware is reasonably sim-
ple; we will see that things become somewhat more complicated when we ex-
tend this pipeline to deal with floating point. Before we do that, we need to
handle branches.

160 Chapter 3 Pipelining
Pipeline Pipeline
register register Destination
containing Opcode containing Opcode of of the Comparison
source of source destination destination forwarded (if equal then
instruction instruction instruction instruction result forward)
EX/MEM Register- ID/EX Register-registerALU, Top ALU EX/IMEM.IR16..20==
register ALU ALU immediate, load, input ID/EX.IRg. .10
store, branch N
EX/MEM Register- ID/EX Register-register ALU BottomALU EX/MEM.IR16..20==
register ALU input ID/IEX.IR11..15
MEM/WB Register- ID/EX Register-registerALU, Top ALU MEM/WB.IR16. 20==
register ALU ALU immediate, load, input ID/EX.IRg..10
store, branch h
MEM/WB Register- ID/EX Register-register ALU ~ BottomALU MEM/WB.IR16, 20==
register ALU input ID/EX.IR11..15
EX/MEM ALU ID/EX Register-registerALU, Top ALU EX/IMEM.IR11..15==
immediate ALU immediate, load, input ID/EX.IRG. 10
store, branch v
EX/MEM ALU ID/EX Register-register ALU BottomALU EX/MEM.IR11..15==
immediate input ID/IEX.IR11..15
MEM/WB ALU ID/IEX Register-registerALU, Top ALU MEM/WB.IR11..15=
immediate ALU immediate, load, input ID/EX.IRg..10
store, branch b
MEM/WB ALU ID/EX Register-register ALU ~ BottomALU MEM/WB.IR11.15=
immediate input ID/IEX.IR11..15
MEM/WB Load ID/EX Register-registerALU, Top ALU MEM/WB.IR11..15=
ALU immediate, load, input ID/EX.IR
6..10
store, branch
MEM/WB Load ID/EX Register-register ALU BottomALU MEM/WB.IR11, 15==
Input ID/EX.IR11..15

FIGURE 3.19 Forwarding of data to the two ALU inputs (for the instruction in EX) can occur from the ALU result

(in EX/MEM or in MEM/WB) or from the load result in MEM/WB.

There are 10 separate comparisons needed to tell wheth-

er a forwarding operation should occur. The top and bottom ALU inputs refer to the inputs corresponding to the first and
second ALU source operands, respectively, and are shown explicitly in Figure 3.1 on page 130 and in Figure 3.20 on
page 161. Remember that the pipeline latch for destination instruction in EX is ID/EX, while the source values come from
the ALUOutput portion of EXIMEM or MEM/WB or the LMD portion of MEM/WB. There is one complication not addressed
by this logic: dealing with multiple instructions that write the same register. For example, during the code sequence ADDR1,
R2, R3; ADDIR1, R1, #2; SUBR4, R3, R1, the logic must ensure that the SUBinstruction uses the result of the ADDI
instruction rather than the result of the ADDinstruction. The logic shown above can be extended to handle this case by simply
testing that forwarding from MEM/WB is enabled only when forwarding from EX/MEM is not enabled for the same input. Be-
cause the ADDI result will be in EX/MEM, it will be forwarded, rather than the ADDresult in MEM/WB.

3.5 Control Hazards 161

ID/EX EX/IMEM MEM/WB

FIGURE 3.20 Forwarding of results to the ALU requires the addition of three extra in-
puts on each ALU multiplexer and the addition of three paths to the new inputs. The
paths correspond to a bypass of (1) the ALU output at the end of the EX, (2) the ALU output
at the end of the MEM stage, and (3) the memory output at the end of the MEM stage.

35 | Control Hazards

Control hazardsan cause a greater performance loss for our DLX pipeline than
do data hazards. When a branch is executed, it may or may not change the PC t
something other than its current value plus 4. Recall that if a branch changes the
PC to its target address, it idakenbranch; if it falls through, it isot taken,or
untaken.If instructioni is a taken branch, then the PC is normally not changed
until the end of MEM, after the completion of the address calculation and com-
parison, as shown in Figure 3.4 (page 134) and Figure 3.5 (page 136).

The simplest method of dealing with branches is to stall the pipeline as soon
as we detect the branch until we reach the MEM stage, which determines the new
PC. Of course, we do not want to stall the pipeline until we know that the instruc-
tion is a branch; thus, the stall does not occur until after the ID stage, and the pipe-
line behavior looks like that shown in Figure 3.21. This control hazard stall must

162

Chapter 3 Pipelining

be implemented differently from a data hazard stall, since the IF cycle of the in-
struction following the branch must be repeated as soon as we know the branch
outcome. Thus, the first IF cycle is essentially a stall, because it never performs
useful work. This stall can be implemented by setting the IF/ID register to zero for
the three cycles. You may have noticed that if the branch is untaken, then the repe-
tition of the IF stage is unnecessary since the correct instruction was indeed
fetched. We will develop several schemes to take advantage of this fact shortly, but
first, let's examine how we could reduce the worst-case branch penalty.

Branch instruction IF ID EX MEM WB

Branch successor IF stall stall IF ID EX MEM WB

Branch successor + 1 IF ID EX MEM WB
Branch successor + 2 IF ID EX MEM
Branch successor + 3 IF ID EX
Branch successor + 4 IF ID
Branch successor + 5 IF

FIGURE 3.21 A branch causes a three-cycle stall in the DLX pipeline: One cycle is a repeated IF cycle and two
cycles are idle. The instruction after the branch is fetched, but the instruction is ignored, and the fetch is restarted once the
branch target is known. It is probably obvious that if the branch is not taken, the second IF for branch successor is redundant.

This will be addressed shortly.

Three clock cycles wasted for every branch is a significant loss. With a 30%
branch frequency and an ideal CPI of 1, the machine with branch stalls achieves
only abouthalf the ideal speedup from pipelining! Thus, reducing the branch
penalty becomes critical. The number of clock cycles in a branch stall can be re-
duced by two steps:

1. Find out whether the branch is taken or not taken earlier in the pipeline.

2. Compute the taken PC (i.e., the address of the branch target) earlier.

To optimize the branch behavitipth of these must be done—it doesn't help to
know the target of the branch without knowing whether the next instruction to ex-
ecute is the target or the instruction at PC + 4. Both steps should be taken as early
in the pipeline as possible.

In DLX, the branchesBEQZandBNE2Z require testing a register for equality
to zero. Thus, it is possible to complete this decision by the end of the ID cycle by
moving the zero test into that cycle. To take advantage of an early decision on
whether the branch is taken, both PCs (taken and untaken) must be computed ear-
ly. Computing the branch target address during ID requires an additional adder
because the main ALU, which has been used for this function so far, is not usable
until EX. Figure 3.22 shows the revised pipelined datapath. With the separate
adder and a branch decision made during ID, there is only a one-clock-cycle stall
on branches. Although this reduces the branch delay to one cycle, it means that
an ALU instruction followed by a branch on the result of the instruction will in-

3.5 Control Hazards 163

IF/ID EX/MEM MEM/WB

Zero?

11.15

Instruction | IR) i
memory MEM/WB.IR Registers

16@ 32 J

M Data

u memory —»| M

X u
X

FIGURE 3.22 The stall from branch hazards can be reduced by moving the zero test and branch target calculation

into the ID phase of the pipeline. Notice that we have made two important changes, each of which removes one cycle from
the three cycle stall for branches. The first change is to move both the branch address target calculation and the branch
condition decision to the ID cycle. The second change is to write the PC of the instruction in the IF phase, using either the
branch target address computed during ID or the incremented PC computed during IF. In comparison, Figure 3.4 obtained
the branch target address from the EX/MEM register and wrote the result during the MEM clock cycle. As mentioned in Fig-
ure 3.4, the PC can be thought of as a pipeline register (e.g., as part of ID/IF), which is written with the address of the next
instruction at the end of each IF cycle.

cur a data hazard stall. Figure 3.23 shows the branch portion of the revised pipe-
line table from Figure 3.5 (page 136).

In some machines, branch hazards are even more expensive in clock cycles
than in our example, since the time to evaluate the branch condition and compute
the destination can be even longer. For example, a machine with separate decod
and register fetch stages will probably haveranch delay-the length of the
control hazard—that is at least one clock cycle longer. The branch delay, unless it
is dealt with, turns into a branch penalty. Many older machines that implement
more complex instruction sets have branch delays of four clock cycles or more,
and large, deeply pipelined machines often have branch penalties of six or seven.
In general, the deeper the pipeline, the worse the branch penalty in clock cycles.
Of course, the relative performance effect of a longer branch penalty depends on
the overall CPI of the machine. A high CPI machine can afford to have more ex-
pensive branches because the percentage of the machine’s performance that wil
be lost from branches is less.

164 Chapter 3 Pipelining
Pipe stage Branch instruction
IF IF/ID.IR ~ Mem[PC];
IFID.NPC,PC — (if (IF/ID.opcode == branch) & (Regs[IF/ID.IR 6.10 |
op 0)) {IF/ID.NPC +
(FIDIR 1) IO#4FIDIR 16 31 }else {PC+AY);
ID IDIEXA ~ Regs[IFIDIR .10], IDIEXB ~ Regs[IFIDIR 11.15 I
IDIEXIR « IF/ID.IR;
IDEXImm < (IFIDIR 1) O##FIDIR 1. 31
EX
MEM
wB
FIGURE 3.23 This revised pipeline structure is based on the original in Figure 3.5, page 136. It uses a separate

adder, as in Figure 3.22, to compute the branch target address during ID. The operations that are new or have changed are
in bold. Because the branch target address addition happens during ID, it will happen for all instructions; the branch condition
6..10 1 op 0) will also be done for all instructions. The selection of the sequential PC or the branch tar-
get PC still occurs during IF, but it now uses values from the ID/EX register, which correspond to the values set by the pre-
vious instruction. This change reduces the branch penalty by two cycles: one from evaluating the branch target and condition
earlier and one from controlling the PC selection on the same clock rather than on the next clock. Since the value of cond
is set to 0, unless the instruction in ID is a taken branch, the machine must decode the instruction before the end of ID. Be-
cause the branch is done by the end of ID, the EX, MEM, and WB stages are unused for branches. An additional complica-
tion arises for jumps that have a longer offset than branches. We can resolve this by using an additional adder that sums
the PC and lower 26 bits of the IR.

(Regs[IF/ID.IR

Before talking about methods for reducing the pipeline penalties that can arise
from branches, let’s take a brief look at the dynamic behavior of branches.

Branch Behavior in Programs

Because branches can dramatically affect pipeline performance, we should look
at their behavior to get some ideas about how the penalties of branches and jumps
might be reduced. We already know something about branch frequencies from
our programs in Chapter 2. Figure 3.24 reviews the overall frequency of control-
flow operations for our SPEC subset on DLX and gives the breakdown between
branches and jumps. Conditional branches are also broken into forward and
backward branches.

The integer benchmarks show conditional branch frequencies of 14% to 16%,
with much lower unconditional branch frequencies (though li has a large number
because of its high procedure call frequency). For the FP benchmarks, the behav-
ior is much more varied with a conditional branch frequency of 3% up to 12%,
but an overall average for both conditional branches and unconditional branches
that is lower than for the integer benchmarks. Forward branches dominate back-
ward branches by about 3.7 to 1 on average.

Since the performance of pipelining schemes for branches may depend on
whether or not branches are taken, this data becomes critical. Figure 3.25 shows
the frequency of forward and backward branches that are taken as a fraction of all
conditional branches. Totaling the two columns shows that 67% of the condition-

3.5 Control Hazards 165

compress

22%

eqgntott

espresso

gcc

Benchmark

doduc

ear

hydro2d

mdljdp

su2cor

0% 5% 10% 15% 20% 25%
Percentage of instructions executed

Il Forward conditional I Backward conditional Unconditional branches
branches branches

FIGURE 3.24 The frequency of instructions (branches, jumps, calls, and returns) that

may change the PC. The unconditional column includes unconditional branches and jumps
(these differ in how the target address is specified), procedure calls, and returns. In all the
cases except li, the number of unconditional PC changes is roughly equally divided between
those that are for calls or returns and those that are unconditional jumps. In li, calls and re-
turns outnumber jumps and unconditional branches by a factor of 3 (6% versus 2%). Since
the compiler uses loop unrolling (described in detail in Chapter 4) as an optimization, the
backward conditional branch frequency will be lower, especially for the floating-point pro-
grams. Overall, the integer programs average 13% forward conditional branches, 3% back-
ward conditional branches, and 4% unconditional branches. The FP programs average 7%,
2%, and 1%, respectively.

al branches are taken on average. By combining the data in Figures 3.24 and
3.25, we can compute the fraction of forward branches that are taken, which is
the probability that a forward branch will be taken. Since backward branches

166 Chapter 3 Pipelining

often form loops, we would expect that the probability of a backward branch be-
ing taken is higher than the probability of a forward branch being taken. Indeed,
the data, when combined, show that 60% of the forward branches are taken on
average and 85% of the backward branches are taken.

80% 78%

70%

60%

50%

Fraction of all

0,
conditional branches 40%

30%

21% 21%
20%

10%

0%

33 3 o <O A < > v S
Q@e &\@ &,99 § 6060 & &@/ .\\& &
AN & & e
Benchmark

B Forward taken Backward taken I

FIGURE 3.25 Together the forward and backward taken branches account for an average of 67% of all conditional
branches. Although the backward branches are outhumbered, they are taken with a frequency that is almost 1.5 times high-
er, contributing substantially to the taken branch frequency. On average, 62% of the branches are taken in the integer pro-
grams and 70% in the FP programs. Note the wide disparity in behavior between a program like su2cor and mdljdp2; these
variations make it challenging to predict the branch behavior very accurately. As in Figure 3.24, the use of loop unrolling
affects this data since it removes backward branches that had a high probability of being taken.

Reducing Pipeline Branch Penalties

There are many methods for dealing with the pipeline stalls caused by branch de-
lay; we discuss four simple compile-time schemes in this subsection. In these
four schemes the actions for a branch are static—they are fixed for each branch
during the entire execution. The software can try to minimize the branch penalty

3.5 Control Hazards 167

using knowledge of the hardware scheme and of branch behavior. After discuss-
ing these schemes, we examine compile-time branch prediction, since these
branch optimizations all rely on such technology. In the next chapter, we look
both at more powerful compile-time schemes (such as loop unrolling) that reduce
the frequency of loop branches and at dynamic hardware-based prediction
schemes.

The simplest scheme to handle branchesfigézeor flushthe pipeline, hold-
ing or deleting any instructions after the branch until the branch destination is
known. The attractiveness of this solution lies primarily in its simplicity both for
hardware and software. It is the solution used earlier in the pipeline shown in
Figure 3.21. In this case the branch penalty is fixed and cannot be reduced by
software.

A higher performance, and only slightly more complex, scheme is to treat ev-
ery branch as not taken, simply allowing the hardware to continue as if the branch
were not executed. Here, care must be taken not to change the machine state unt
the branch outcome is definitely known. The complexity that arises from having
to know when the state might be changed by an instruction and how to “back out”
a change might cause us to choose the simpler solution of flushing the pipeline in
machines with complex pipeline structures.

In the DLX pipeline, thispredict-not-takenor predict-untakenscheme is
implemented by continuing to fetch instructions as if the branch were a normal
instruction. The pipeline looks as if nothing out of the ordinary is happening. If
the branch is taken, however, we need to turn the fetched instruction into a no-op
(simply by clearing the IF/ID register) and restart the fetch at the target address.
Figure 3.26 shows both situations.

Untaken branch instruction IF ID EX MEM WB

Instructioni + 1 IF ID EX MEM WB

Instructioni + 2 IF ID EX MEM WB

Instructioni + 3 IF ID EX MEM WB
Instructioni + 4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Instructioni + 1 IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

FIGURE 3.26 The predict-not-taken scheme and the pipeline sequence when the branch is untaken (top) and taken
(bottom). When the branch is untaken, determined during ID, we have fetched the fall-through and just continue. If the
branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following the branch to stall

one clock cycle.

168 Chapter 3 Pipelining

An alternative scheme is to treat every branch as taken. As soon as the branch
is decoded and the target address is computed, we assume the branch to be taken
and begin fetching and executing at the target. Because in our DLX pipeline we
don’t know the target address any earlier than we know the branch outcome, there
is no advantage in this approach for DLX. In some machines—especially those
with implicitly set condition codes or more powerful (and hence slower) branch
conditions—the branch target is known before the branch outcome, and a predict-
taken scheme might make sense. In either a predict-taken or predict-not-taken
scheme, the compiler can improve performance by organizing the code so that
the most frequent path matches the hardware’s choice. Our fourth scheme pro-
vides more opportunities for the compiler to improve performance.

A fourth scheme in use in some machines is caliddyed branchThis tech-
nigue is also used in many microprogrammed control units. In a delayed branch,
the execution cycle with a branch delay of lenyih

branch instruction

sequential successor 1
sequential successor
sequential successor n
branch target if taken

The sequential successors are in lthench-delay slotsThese instructions are
executed whether or not the branch is taken. The pipeline behavior of the DLX
pipeline, which would have one branch-delay slot, is shown in Figure 3.27. In

Untaken branch instruction IF ID EX MEM WB

Branch-delay instructioni ¢ 1) IF ID EX MEM WB

Instructioni + 2 IF ID EX MEM WB

Instructioni + 3 IF ID EX MEM WB

Instructioni + 4 IF ID EX MEM WB

Taken branch instruction IF ID EX MEM WB

Branch-delay instructioni ¢ 1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB
FIGURE 3.27 The behavior of a delayed branch is the same whether or not the branch is taken. The instructions in

the delay slot (there is only one delay slot for DLX) are executed. If the branch is untaken, execution continues with the in-
struction after the branch-delay instruction; if the branch is taken, execution continues at the branch target. When the in-
struction in the branch-delay slot is also a branch, the meaning is unclear: if the branch is not taken, what should happen to
the branch in the branch-delay slot? Because of this confusion, architectures with delay branches often disallow putting a
branch in the delay slot.

3.5 Control Hazards 169

practice, all machines with delayed branch have a single instruction delay, and
we focus on that case.

The job of the compiler is to make the successor instructions valid and useful.
A number of optimizations are used. Figure 3.28 shows the three ways in which
the branch delay can be scheduled. Figure 3.29 shows the different constraints for
each of these branch-scheduling schemes, as well as situations in which they win.

(a) From before (b) From target (c) From fall through
ADD R1, R2, R3 ADD R1, R2, R3
SUB R4, R5, R6 <—
if R2 = 0 then ———— if R1 =0 then
Delay slot ADD R1, R2, R3 Delay slot
if R1 = 0 then ORR7, R8,R9

Delay slot SUB R4, R5, R6 <——

Becomes Becomes Becomes

SUB R4, R5, R6

-~

ADD R1, R2, R3

if R1 =0 then

OR R7, R8, R9

if R2 = 0 then

ADD R1, R2, R3

ADD R1, R2, R3

if R1 =0 then

SUB R4, R5, R6

SUB R4, R5, R6 <—

FIGURE 3.28 Scheduling the branch-delay slot. The top box in each pair shows the
code before scheduling; the bottom box shows the scheduled code. In (a) the delay slot is
scheduled with an independent instruction from before the branch. This is the best choice.
Strategies (b) and (c) are used when (a) is not possible. In the code sequences for (b) and
(c), the use of R1 in the branch condition prevents the ADDinstruction (whose destination is
R1) from being moved after the branch. In (b) the branch-delay slot is scheduled from the tar-
get of the branch; usually the target instruction will need to be copied because it can be
reached by another path. Strategy (b) is preferred when the branch is taken with high proba-
bility, such as a loop branch. Finally, the branch may be scheduled from the not-taken fall
through as in (c). To make this optimization legal for (b) or (c), it must be OK to execute the
moved instruction when the branch goes in the unexpected direction. By OK we mean that
the work is wasted, but the program will still execute correctly. This is the case, for example
in case (b), if R4 were an unused temporary register when the branch goes in the unexpected
direction.

170

Chapter 3 Pipelining

Scheduling strategy

Requirements Improves performance when?

(a) From before

Branch must not depend on the rescheduled instrédways.
tions.

(b) From target

Must be OK to execute rescheduled instructions ifWhen branch is taken. May
branch is not taken. May need to duplicate instruc- enlarge program if instructions are
tions. duplicated.

(c) From fall through

Must be OK to execute instructions if branch is taken. When branch is not taken.

FIGURE 3.29 Delayed-branch scheduling schemes and their requirements. The origin of the instruction being sched-
uled into the delay slot determines the scheduling strategy. The compiler must enforce the requirements when looking for
instructions to schedule the delay slot. When the slots cannot be scheduled, they are filled with no-op instructions. In strategy
(b), if the branch target is also accessible from another point in the program—as it would be if it were the head of a loop—
the target instructions must be copied and not just moved.

The limitations on delayed-branch scheduling arise from (1) the restrictions
on the instructions that are scheduled into the delay slots and (2) our ability to
predict at compile time whether a branch is likely to be taken or not. Shortly, we
will see how we can better predict branches statically at compile time. To im-
prove the ability of the compiler to fill branch delay slots, most machines with
conditional branches have introducedaacellingor nullifying branch. In a can-
celling branch, the instruction includes the direction that the branch was predict-
ed. When the branch behaves as predicted, the instruction in the branch-delay slot
is simply executed as it would normally be with a delayed branch. When the
branch is incorrectly predicted, the instruction in the branch-delay slot is simply
turned into a no-op. Figure 3.30 shows the behavior of a predicted-taken cancel-
ling branch, both when the branch is taken and untaken.

Untaken branch instruction IF ID EX MEM WB

Branch-delay instruction ¢ 1) IF idle idle idle idle

Instructioni + 2 IF ID EX MEM WB

Instructioni + 3 IF ID EX MEM WB
Instructioni + 4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Branch-delay instruction ¢ 1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

FIGURE 3.30 The behavior of a predicted-taken cancelling branch depends on whether the branch is taken or not.
The instruction in the delay slot is executed only if the branch is taken and is otherwise made into a no-op.

3.5 Control Hazards 171

The advantage of cancelling branches is that they eliminate the requirements
on the instruction placed in the delay slot, enabling the compiler to use schedul-
ing schemes (b) and (c) of Figure 3.28 without meeting the requirements shown
for these schemes in Figure 3.29. Most machines with cancelling branches pro-
vide both a noncancelling form (i.e., a regular delayed branch) and a cancelling
form, usually cancel if not taken. This combination gains most of the advantages,
but does not allow scheduling scheme (c) to be used unless the requirements of
Figure 3.29 are met.

Figure 3.31 shows the effectiveness of the branch scheduling in DLX with a
single branch-delay slot and both a noncancelling branch and a cancel-if-untaken
form. The compiler uses a standard delayed branch whenever possible and ther
opts for a cancel-if-not-taken branch (also caldeahch likely. The second col-
umn shows that almost 20% of the branch delay slots are filled with no-ops. These
occur when it is not possible to fill the delay slot, either because the potential can-
didates are unknown (e.g., for a jump register that will be used in a case statement)
or because the successors are also branches. (Branches are not allowed in branc
delay slots because of the confusion in semantics.) The table shows that the

% % % % Total %
conditional conditional cancelling branches branches with
branches branches branches with empty or
% conditional with empty that are that are cancelled cancelled
Benchmark branches slots cancelling cancelled delay slots delay slot
compress 14% 18% 31% 43% 13% 31%
eqntott 24% 24% 50% 24% 12% 36%
espresso 15% 29% 19% 21% 4% 33%
gcc 15% 16% 33% 34% 11% 27%
li 15% 20% 55% 48% 26% 46%
Integer average 17% 21% 38% 34% 13% 35%
doduc 8% 33% 12% 62% 7% 40%
ear 10% 37% 36% 14% 5% 42%
hydro2d 12% 0% 69% 24% 17% 17%
mdljdp2 9% 0% 86% 10% 9% 9%
su2cor 3% 7% 17% 57% 10% 17%
FP average 8% 16% 44% 33% 10% 25%
Overall average 12% 18% 41% 34% 12% 30%

FIGURE 3.31 Delayed and cancelling delay branches for DLX allow branch hazards to be hidden 70% of the time
on average for these 10 SPEC benchmarks. Empty delay slots cannot be filled at all (most often because the branch target
is another branch) in 18% of the branches. Just under half the conditional branches use a cancelling branch, and most of

these are not cancelled (65%). The behavior varies widely across benchmarks. When the fraction of conditional branches
is added in, the contribution to CPI varies even more widely.

172

Chapter 3 Pipelining

remaining 80% of the branch delay slots are filled nearly equally by standard de-
layed branches and by cancelling branches. Most of the cancelling branches are
not cancelled and hence contribute to useful computation. Figure 3.32 summar-
izes the performance of the combination of delayed branch and cancelling
branch. Overall, 70% of the branch delays are usefully filled, reducing the stall
penalty to 0.3 cycles per conditional branch.

LT ———————|—|T" | """ ""™"™"™"™"™
ABYh |-
40%
35%
30%
25%
20%
15%
10%

5%

Percentage of
conditional branches

0%

Benchmark

Il Empty slot Canceled delay slots I

FIGURE 3.32 The performance of delayed and cancelling branches is summarized by
showing the fraction of branches either with empty delay slots or with a cancelled de-

lay slot. On average 30% of the branch delay slots are wasted. The integer programs are,
on average, worse, wasting an average of 35% of the slots versus 25% for the FP programs.
Notice, though, that two of the FP programs waste more branch delay slots than four of the
five integer programs.

Delayed branches are an architecturally visible feature of the pipeline. This is
the source both of their primary advantage—allowing the use of simple compiler
scheduling to reduce branch penalties—and their primary disadvantage—expos-
ing an aspect of the implementation that is likely to change. In the early RISC
machines with single-cycle branch delays, the delayed branch approach was at-
tractive, since it yielded good performance with minimal hardware costs. More
recently, with deeper pipelines and longer branch delays, a delayed branch ap-
proach is less useful since it cannot easily hide the longer delays. With these
longer branch delays, most architects have found it necessary to include more
powerful hardware schemes for branch prediction (which we will explore in the
next chapter), making the delayed branch superfluous.This has led to recent RISC
architectures that include both delayed and nondelayed branches or that include
only nondelayed branches, relying on hardware prediction.

3.5 Control Hazards 173

There is a small additional hardware cost for delayed branches. For a single-
cycle delayed branch, the only case that exists in practice, a single extra PC is
needed. To understand why an extra PC is needed for the single-cycle delay case
consider when the interrupt occurs for the instruction in the branch-delay slot. If
the branch was taken, then the instruction in the delay slot and the branch target
have addresses that are not sequential. Thus, we need to save the PCs of both ir
structions and restore them after the interrupt to restart the pipeline. The two PCs
can be kept with the control in the pipeline latches and passed along with the in-
struction. This makes saving and restoring them easy.

Performance of Branch Schemes

What is the effective performance of each of these schemes? The effective pipe-
line speedup with branch penalties, assuming an ideal CPI of 1, is

Pipeline depth
1 + Pipeline stall cycles from branches

Pipeline speedup =

Because of the following:

Pipeline stall cycles from branches = Branch frequenByanch penalty
we obtain

Pipeline depth
1 + Branch frequency x Branch penalty

Pipeline speedup =

The branch frequency and branch penalty can have a component from both un-
conditional and conditional branches. However, the latter dominate since they are
more frequent.

Using the DLX measurements in this section, Figure 3.33 shows several hard-
ware options for dealing with branches, along with their performances given as
branch penalty and as CPI (assuming a base CPI of 1).

Branch penalty per Average branch penalty Effective CPI with

conditional branch Penalty per per branch branch stalls
Scheduling unconditional
scheme Integer FP branch Integer FP Integer FP
Stall pipeline 1.00 1.00 1.00 1.00 1.00 1.17 1.15
Predict taken 1.00 1.00 1.00 1.00 1.00 1.17 1.15
Predict not taken 0.62 0.70 1.0 0.69 0.74 1.12 111
Delayed branch 0.35 0.25 0.0 0.30 0.21 1.06 1.03

FIGURE 3.33 Overall costs of a variety of branch schemes with the DLX pipeline. These data are for our DLX pipeline

using the average measured branch frequencies from Figure 3.24 on page 165, the measurements of taken/untaken fre-
quencies from 3.25 on page 166, and the measurements of delay-slot filling from Figure 3.31 on page 171. Shown are both
the penalties per branch and the resulting overall CPI including only the effect of branch stalls and assuming a base CPI of 1.

174 Chapter 3 Pipelining

Remember that the numbers in this sectiondaaenatically affected by the
length of the pipeline delay and the base CPI. A longer pipeline delay will cause an
increase in the penalty and a larger percentage of wasted time. A delay of only one
clock cycle is small—the R4000 pipeline, which we examine in section 3.9, has a
conditional branch delay of three cycles. This results in a much higher penalty.

EXAMPLE For an R4000-style pipeline, it takes three pipeline stages before the
branch target address is known and an additional cycle before the branch
condition is evaluated, assuming no stalls on the registers in the condi-
tional comparison. This leads to the branch penalties for the three sim-
plest prediction schemes listed in Figure 3.34.

Branch scheme Penalty unconditional Penalty untaken Penalty taken

Flush pipeline 2 3 3
Predict taken 2 3 2
Predict untaken 2 0 3

FIGURE 3.34 Branch penalties for the three simplest prediction schemes for a
deeper pipeline.

Find the effective addition to the CPI arising from branches for this
pipeline, using the data from the 10 SPEC benchmarks in Figures 3.24
and 3.25.

ANSWER We find the CPIs by multiplying the relative frequency of unconditional,
conditional untaken, and conditional taken branches by the respective
penalties. These frequencies for the 10 SPEC programs are 4%, 6%, and
10%, respectively. The results are shown in Figure 3.35.

Addition to the CPI
Unconditional Untaken conditional Taken conditional
Branch scheme branches branches branches All branches
Frequency of event 4% 6% 10% 20%
Stall pipeline 0.08 0.18 0.30 0.56
Predict taken 0.08 0.18 0.20 0.46
Predict untaken 0.08 0.00 0.30 0.38

FIGURE 3.35 CPI penalties for three branch-prediction schemes and a deeper pipeline.

The differences among the schemes are substantially increased with
this longer delay. If the base CPI was 1 and branches were the only
source of stalls, the ideal pipeline would be 1.56 times faster than a

3.5 Control Hazards 175

pipeline that used the stall-pipeline scheme. The predict-untaken scheme
would be 1.13 times better than the stall-pipeline scheme under the same
assumptions.

As we will see in section 3.9, the R4000 uses a mixed strategy with
a one-cycle, cancelling delayed branch for the first cycle of the branch
penalty. For an unconditional branch, a single-cycle stall is always added.
For conditional branches, the remaining two cycles of the branch penalty
use a predict-not-taken scheme. We will see measurements of the effec-
tive branch penalties for this strategy later. .

Static Branch Prediction: Using Compiler Technology

Delayed branches are a technique that exposes a pipeline hazard so that the com
piler can reduce the penalty associated with the hazard. As we saw, the effective-
ness of this technique partly depends on whether we correctly guess which way a
branch will go. Being able to accurately predict a branch at compile time is also
helpful for scheduling data hazards. Consider the following code segment;

LW R1,0(R2)

SUB RLRLR3

BEQZ RIL

OR R4,R5,R6

ADD RI10,R4R3
L: ADD R7,R8R9

The dependence of tisuBandBEQZzon theLwinstruction means that a stall will

be needed after thav Suppose we knew that this branch was almost always tak-
en and that the value of R7 was not needed on the fall-through path. Then we
could increase the speed of the program by moving the instrugian
R7,R8,R9 to the position after thew Correspondingly, if we knew the branch
was rarely taken and that the value of R4 was not needed on the taken path, ther
we could contemplate moving tlaRinstruction after thew In addition, we can

also use the information to better schedule any branch delay, since choosing how
to schedule the delay depends on knowing the branch behavior.

To perform these optimizations, we need to predict the branch statically when
we compile the program. In the next chapter, we will examine the use of dynamic
prediction based on runtime program behavior. We will also look at a variety of
compile-time methods for scheduling code; these techniques require static
branch prediction and thus the ideas in this section are critical.

There are two basic methods we can use to statically predict branches: by ex-
amination of the program behavior and by the use of profile information collected
from earlier runs of the program. We saw in Figure 3.25 (page 166) that most
branches were taken for both forward and backward branches. Thus, the simplest
scheme is to predict a branch as taken. This scheme has an average mispredictio

176

Chapter 3 Pipelining

rate for the 10 programs in Figure 3.25 of the untaken branch frequency (34%).
Unfortunately, the misprediction rate ranges from not very accurate (59%) to
highly accurate (9%).

Another alternative is to predict on the basis of branch direction, choosing
backward-going branches to be taken and forward-going branches to be not tak-
en. For some programs and compilation systems, the frequency of forward taken
branches may be significantly less than 50%, and this scheme will do better than
just predicting all branches as taken. In our SPEC programs, however, more than
half of the forward-going branches are taken. Hence, predicting all branches as
taken is the better approach. Even for other benchmarks or compilers, direction-
based prediction is unlikely to generate an overall misprediction rate of less than
30% to 40%.

A more accurate technique is to predict branches on the basis of profile infor-
mation collected from earlier runs. The key observation that makes this worth-
while is that the behavior of branches is often bimodally distributed; that is, an
individual branch is often highly biased toward taken or untaken. Figure 3.36
shows the success of branch prediction using this strategy. The same input data
were used for runs and for collecting the profile; other studies have shown that
changing the input so that the profile is for a different run leads to only a small
change in the accuracy of profile-based prediction.

25%

22%

20%
15%
Misprediction rate

10%

5%

0%

Benchmark

FIGURE 3.36 Misprediction rate for a profile-based predictor varies widely but is gen-

erally better for the FP programs, which have an average misprediction rate of 9% with

a standard deviation of 4%, than for the integer programs, which have an average
misprediction rate of 15% with a standard deviation of 5%. The actual performance de-
pends on both the prediction accuracy and the branch frequency, which varies from 3% to
24% in Figure 3.31 (page 171); we will examine the combined effect in Figure 3.37.

3.5 Control Hazards 177

While we can derive the prediction accuracy of a predict-taken strategy and
measure the accuracy of the profile scheme, as in Figure 3.36, the wide range of
frequency of conditional branches in these programs, from 3% to 24%, means
that the overall frequency of a mispredicted branch varies widely. Figure 3.37
shows the number of instructions executed between mispredicted branches for
both a profile-based and a predict-taken strategy. The number varies widely, both
because of the variation in accuracy and the variation in branch frequency. On av-
erage, the predict-taken strategy has 20 instructions per mispredicted branch anc
the profile-based strategy has 110. However, these averages are very different fol
integer and FP programs, as the data in Figure 3.37 show.

1000

Instructions between
mispredictions

Benchmark

B Predict taken Profile based I

FIGURE 3.37 Accuracy of a predict-taken strategy and a profile-based predictor as measured by the number of
instructions executed between mispredicted branches and shown on a log scale. The average number of instructions
between mispredictions is 20 for the predict-taken strategy and 110 for the profile-based prediction; however, the standard
deviations are large: 27 instructions for the predict-taken strategy and 85 instructions for the profile-based scheme. This wide
variation arises because programs such as su2cor have both low conditional branch frequency (3%) and predictable branch-
es (85% accuracy for profiling), while eqntott has eight times the branch frequency with branches that are nearly 1.5 times
less predictable. The difference between the FP and integer benchmarks as groups is large. For the predict-taken strategy,
the average distance between mispredictions for the integer benchmarks is 10 instructions, while it is 30 instructions for the
FP programs. With the profile scheme, the distance between mispredictions for the integer benchmarks is 46 instructions,
while it is 173 instructions for the FP benchmarks.

Summary: Performance of the DLX Integer Pipeline

We close this section on hazard detection and elimination by showing the total
distribution of idle clock cycles for our integer benchmarks when run on the DLX
pipeline with software for pipeline scheduling. (After we examine the DLX FP
pipeline in section 3.7, we will examine the overall performance of the FP bench-
marks.) Figure 3.38 shows the distribution of clock cycles lost to load and branch

178 Chapter 3 Pipelining

14%

-

8

S
)

.

R

B
T

10% 9%

8% 7% 7%
Percentage of all instructions that stall

Benchmark

Il Branch stalls Load stalls I

FIGURE 3.38 Percentage of the instructions that cause a stall cycle. This assumes a
perfect memory system; the clock-cycle count and instruction count would be identical if there
were no integer pipeline stalls. It also assumes the availability of both a basic delayed branch
and a cancelling delayed branch, both with one cycle of delay. According to the graph, from
8% to 23% of the instructions cause a stall (or a cancelled instruction), leading to CPIs from
pipeline stalls that range from 1.09 to 1.23. The pipeline scheduler fills load delays before
branch delays, and this affects the distribution of delay cycles.

delays, which is obtained by combining the separate measurements shown in Fig-
ures 3.16 (page 157) and 3.31 (page 171).

Overall the integer programs exhibit an average of 0.06 branch stalls per in-
struction and 0.05 load stalls per instruction, leading to an average CPI from
pipelining (i.e., assuming a perfect memory system) of 1.11. Thus, with a perfect
memory system and no clock overhead, pipelining could improve the perfor-
mance of these five integer SPECint92 benchmarks by 5/1.11 or 4.5 times.

36 | What Makes Pipelining Hard to Implement?

Now that we understand how to detect and resolve hazards, we can deal with

some complications that we have avoided so far. The first part of this section con-

siders the challenges of exceptional situations where the instruction execution or-

der is changed in unexpected ways. In the second part of this section, we discuss
some of the challenges raised by different instruction sets.

3.6 What Makes Pipelining Hard to Implement? 179

Dealing with Exceptions

Exceptional situations are harder to handle in a pipelined machine because the
overlapping of instructions makes it more difficult to know whether an instruc-
tion can safely change the state of the machine. In a pipelined machine, an in-
struction is executed piece by piece and is not completed for several clock cycles.
Unfortunately, other instructions in the pipeline can raise exceptions that may
force the machine to abort the instructions in the pipeline before they complete.
Before we discuss these problems and their solutions in detail, we need to under-
stand what types of situations can arise and what architectural requirements exist
for supporting them.

Types of Exceptions and Requirements

The terminology used to describe exceptional situations where the normal execu-
tion order of instruction is changed varies among machines. Theitaamspt,

fault, andexceptiorare used, though not in a consistent fashion. We use the term
exceptiorto cover all these mechanisms, including the following:

I/O device request

Invoking an operating system service from a user program
Tracing instruction execution

Breakpoint (programmer-requested interrupt)

Integer arithmetic overflow

FP arithmetic anomaly (see Appendix A)

Page fault (not in main memory)

Misaligned memory accesses (if alignment is required)
Memory-protection violation

Using an undefined or unimplemented instruction
Hardware malfunctions

Power failure

When we wish to refer to some particular class of such exceptions, we will use a
longer name, such as I/O interrupt, floating-point exception, or page fault. Figure
3.39 shows the variety of different names for the common exception events
above.

Although we use the namexceptionto cover all of these events, individual
events have important characteristics that determine what action is needed in the
hardware.The requirements on exceptions can be characterized on five semi-
independent axes:

180

Chapter 3 Pipelining

Exception event IBM 360 VAX Motorola 680x0 Intel 80x86

I/O device request Input/output Device interrupt Exception (Level 0...7 Vectored interrupt
interruption autovector)

Invoking the operat- Supervisor call Exception (change Exception Interrupt

ing system service interruption mode supervisor (unimplemented (INT instruction)

from a user trap) instruction)—

program on Macintosh

Tracing instruction Not applicable Exception (trace Exception (trace) Interrupt (single-

execution fault) step trap)

Breakpoint Not applicable Exception (break- Exception (illegal Interrupt (break-

point fault)

instruction or break-
point)

point trap)

Integer arithmetic
overflow or under-

Program interrup-
tion (overflow or

Exception (integer
overflow trap or

Exception
(floating-point

Interrupt (overflow
trap or math unit

flow; FP trap underflow floating underflow coprocessor errors) exception)
exception) fault)

Page fault (not in Not applicable (only Exception (transla- Exception (memory- Interrupt

main memory) in 370) tion not valid fault) management unit (page fault)

errors)

Misaligned memory
accesses

Program interrup-
tion (specification
exception)

Not applicable

Exception
(address error)

Not applicable

Memory protection
violations

Program interrup-
tion (protection
exception)

Exception (access
control violation
fault)

Exception
(bus error)

Interrupt (protection
exception)

Using undefined

Program interrup-

Exception (opcode

Exception (illegal

Interrupt (invalid

instructions tion (operation privileged/ instruction or break- opcode)
exception) reserved fault) point/unimplemented
instruction)
Hardware Machine-check Exception Exception Not applicable
malfunctions interruption (machine-check (bus error)

abort)

Power failure

Machine-check
interruption

Urgent interrupt

Not applicable

Nonmaskable
interrupt

FIGURE 3.39 The names of common exceptions vary across four different architectures.

Every event on the IBM

360 and 80x86 is called an interrupt, while every event on the 680x0 is called an exception. VAX divides events into inter-
rupts or exceptions. Adjectives device, software, and urgent are used with VAX interrupts, while VAX exceptions are subdi-
vided into faults, traps, and aborts.

1. Synchronous versus asynchronetsthe event occurs at the same place ev-
ery time the program is executed with the same data and memory allocation,

the event isynchronousWith the exception of hardware malfunctioasyn-

chronousevents are caused by devices external to the processor and memory.
Asynchronous events usually can be handled after the completion of the

current instruction, which makes them easier to handle.

3.6 What Makes Pipelining Hard to Implement? 181

2. User requested versus coereel the user task directly asks for it, it isiser-
requestevent. In some sense, user-requested exceptions are not really excep-
tions, since they are predictable. They are treated as exceptions, however, be-
cause the same mechanisms that are used to save and restore the state are us
for these user-requested events. Because the only function of an instruction
that triggers this exception is to cause the exception, user-requested exceptions
can always be handled after the instruction has completedcedexceptions
are caused by some hardware event that is not under the control of the user
program. Coerced exceptions are harder to implement because they are not
predictable.

3. User maskable versus user nonmaskabfean event can be masked or dis-
abled by a user task, it iser maskableThis mask simply controls whether
the hardware responds to the exception or not.

4. Within versus between instructiend his classification depends on whether
the event prevents instruction completion by occurring in the middle of exe-
cution—no matter how short—or whether it is recognibetiveeninstruc-
tions. Exceptions that occuiithin instructions are usually synchronous, since
the instruction triggers the exception. It's harder to implement exceptions that
occur within instructions than those between instructions, since the instruction
must be stopped and restarted. Asynchronous exceptions that occur within in-
structions arise from catastrophic situations (e.g., hardware malfunction) and
always cause program termination.

5. Resume versus terminatdf the program’s execution always stops after the
interrupt, it is aerminatingevent. If the program’s execution continues after
the interrupt, it is aesumingevent. It is easier to implement exceptions that
terminate execution, since the machine need not be able to restart execution of
the same program after handling the exception.

Figure 3.40 classifies the examples from Figure 3.39 according to these five
categories. The difficult task is implementing interrupts occurring within instruc-
tions where the instruction must be resumed. Implementing such exceptions re-
quires that another program must be invoked to save the state of the executing
program, correct the cause of the exception, and then restore the state of the pro
gram before the instruction that caused the exception can be tried again. This pro-
cess must be effectively invisible to the executing program. If a pipeline provides
the ability for the machine to handle the exception, save the state, and restart
without affecting the execution of the program, the pipeline or machine is said to
be restartable While early supercomputers and microprocessors often lacked
this property, almost all machines today support it, at least for the integer pipe-
line, because it is needed to implement virtual memory (see Chapter 5).

182 Chapter 3 Pipelining

User User Within vs. Resume
Synchronous vs. requestvs. maskable vs. between VS.
Exception type asynchronous coerced nonmaskable instructions terminate
I/O device request Asynchronous Coerced Nonmaskable Between Resume
Invoke operating system Synchronous User Nonmaskable Between Resume
request
Tracing instruction execution ~ Synchronous User User maskable Between Resume
request
Breakpoint Synchronous User User maskable Between Resume
request
Integer arithmetic overflow Synchronous Coerced User maskable Within Resume
Floating-point arithmetic Synchronous Coerced User maskable Within Resume
overflow or underflow
Page fault Synchronous Coerced Nonmaskable Within Resume
Misaligned memory accesses Synchronous Coerced User maskable Within Resyume
Memory-protection Synchronous Coerced Nonmaskable Within Resume
violations
Using undefined instructions Synchronous Coerced Nonmaskable Within Terminate
Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate
Power failure Asynchronous Coerced Nonmaskable Within Terminate

FIGURE 3.40 Five categories are used to define what actions are needed for the different exception types shown

in Figure 3.39. Exceptions that must allow resumption are marked as resume, although the software may often choose to
terminate the program. Synchronous, coerced exceptions occurring within instructions that can be resumed are the most
difficult to implement. We might expect that memory protection access violations would always result in termination; how-
ever, modern operating systems use memory protection to detect events such as the first attempt to use a page or the first
write to a page. Thus, processors should be able to resume after such exceptions.

Stopping and Restarting Execution

As in unpipelined implementations, the most difficult exceptions have two prop-
erties: (1) they occur within instructions (that is, in the middle of the instruction
execution corresponding to EX or MEM pipe stages), and (2) they must be re-
startable. In our DLX pipeline, for example, a virtual memory page fault result-
ing from a data fetch cannot occur until sometime in the MEM stage of the
instruction. By the time that fault is seen, several other instructions will be in exe-
cution. A page fault must be restartable and requires the intervention of another
process, such as the operating system. Thus, the pipeline must be safely shut
down and the state saved so that the instruction can be restarted in the correct
state. Restarting is usually implemented by saving the PC of the instruction at
which to restart. If the restarted instruction is not a branch, then we will continue
to fetch the sequential successors and begin their execution in the normal fashion.
If the restarted instruction is a branch, then we will reevaluate the branch condi-
tion and begin fetching from either the target or the fall through. When an excep-
tion occurs, the pipeline control can take the following steps to save the pipeline
state safely:

3.6 What Makes Pipelining Hard to Implement? 183

1. Force atrap instruction into the pipeline on the next IF.

2. Until the trap is taken, turn off all writes for the faulting instruction and for all
instructions that follow in the pipeline; this can be done by placing zeros into
the pipeline latches of all instructions in the pipeline, starting with the instruc-
tion that generates the exception, but not those that precede that instruction.
This prevents any state changes for instructions that will not be completed be-
fore the exception is handled.

3. After the exception-handling routine in the operating system receives control,
it immediately saves the PC of the faulting instruction. This value will be used
to return from the exception later.

When we use delayed branches, as mentioned in the last section, it is no long-
er possible to re-create the state of the machine with a single PC because the in
structions in the pipeline may not be sequentially related. So we need to save and
restore as many PCs as the length of the branch delay plus one. This is done ir
the third step above.

After the exception has been handled, special instructions return the machine
from the exception by reloading the PCs and restarting the instruction stream (us-
ing the instruction RFE in DLX). If the pipeline can be stopped so that the in-
structions just before the faulting instruction are completed and those after it can
be restarted from scratch, the pipeline is said to peaeise exceptiongdeally,
the faulting instruction would not have changed the state, and correctly handling
some exceptions requires that the faulting instruction have no effects. For other
exceptions, such as floating-point exceptions, the faulting instruction on some
machines writes its result before the exception can be handled. In such cases, the
hardware must be prepared to retrieve the source operands, even if the destinatiot
is identical to one of the source operands. Because floating-point operations may
run for many cycles, it is highly likely that some other instruction may have writ-
ten the source operands (as we will see in the next section, floating-point opera-
tions often complete out of order). To overcome this, many recent high-
performance machines have introduced two modes of operation. One mode has
precise exceptions and the other (fast or performance mode) does not. Of course
the precise exception mode is slower, since it allows less overlap among floating-
point instructions. In some high-performance machines, including Alpha 21064,
Power-2, and MIPS R8000, the precise mode is often much slower (>10 times)
and thus useful only for debugging of codes.

Supporting precise exceptions is a requirement in many systems, while in oth-
ers it is “just” valuable because it simplifies the operating system interface. At a
minimum, any machine with demand paging or IEEE arithmetic trap handlers
must make its exceptions precise, either in the hardware or with some software
support. For integer pipelines, the task of creating precise exceptions is easier,
and accommodating virtual memory strongly motivates the support of precise

184

Chapter 3 Pipelining

exceptions for memory references. In practice, these reasons have led designers
and architects to always provide precise exceptions for the integer pipeline. In
this section we describe how to implement precise exceptions for the DLX inte-
ger pipeline. We will describe techniques for handling the more complex chal-
lenges arising in the FP pipeline in section 3.7.

Exceptions in DLX

Figure 3.41 shows the DLX pipeline stages and which “problem” exceptions
might occur in each stage. With pipelining, multiple exceptions may occur in the
same clock cycle because there are multiple instructions in execution. For exam-
ple, consider this instruction sequence:

LW IF ID EX MEM WB
ADD IF ID EX MEM wB

This pair of instructions can cause a data page fault and an arithmetic exception
at the same time, since thw/is in the MEM stage while thaDDis in the EX

stage. This case can be handled by dealing with only the data page fault and then
restarting the execution. The second exception will reoccur (but not the first, if
the software is correct), and when the second exception occurs, it can be handled
independently.

In reality, the situation is not as straightforward as this simple example. Ex-
ceptions may occur out of order; that is, an instruction may cause an exception
before an earlier instruction causes one. Consider again the above sequence of in-
structions L Wfollowed byADD ThelLWcan get a data page fault, seen when the
instruction is in MEM, and thaDDcan get an instruction page fault, seen when

Pipeline stage Problem exceptions occurring

IF Page fault on instruction fetch; misaligned memory access;
memory-protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch; misaligned memory access;
memory-protection violation

WB None

FIGURE 3.41 Exceptions that may occur in the DLX pipeline. Exceptions raised from in-
struction or data-memory access account for six out of eight cases.

3.6 What Makes Pipelining Hard to Implement? 185

the ADDinstruction is in IF. The instruction page fault will actually occur first,
even though it is caused by a later instruction!

Since we are implementing precise exceptions, the pipeline is required to han-
dle the exception caused by the/instruction first. To explain how this works,
let’s call the instruction in the position of the/instructioni, and the instruction
in the position of th@DDinstructioni + 1. The pipeline cannot simply handle an
exception when it occurs in time, since that will lead to exceptions occurring out
of the unpipelined order. Instead, the hardware posts all exceptions caused by a
given instruction in a status vector associated with that instruction. The exception
status vector is carried along as the instruction goes down the pipeline. Once an
exception indication is set in the exception status vector, any control signal that
may cause a data value to be written is turned off (this includes both register
writes and memory writes). Because a store can cause an exception during MEM,
the hardware must be prepared to prevent the store from completing if it raises an
exception.

When an instruction enters WB (or is about to leave MEM), the exception status
vector is checked. If any exceptions are posted, they are handled in the order in
which they would occur in time on an unpipelined machine—the exception corre-
sponding to the earliest instruction (and usually the earliest pipe stage for that in-
struction) is handled first. This guarantees that all exceptions will be seen on
instructioni before any are seen b 1. Of course, any action taken in earlier pipe
stages on behalf of instructibmay be invalid, but since writes to the register file
and memory were disabled, no state could have been changed. As we will see in
section 3.7, maintaining this precise model for FP operations is much harder.

In the next subsection we describe problems that arise in implementing excep-
tions in the pipelines of machines with more powerful, longer-running instructions.

Instruction Set Complications

No DLX instruction has more than one result, and our DLX pipeline writes that
result only at the end of an instruction’s execution. When an instruction is guar-
anteed to complete it is calledmmittedIn the DLX integer pipeline, all instruc-

tions are committed when they reach the end of the MEM stage (or beginning of
WB) and no instruction updates the state before that stage. Thus, precise excep:
tions are straightforward. Some machines have instructions that change the state
in the middle of the instruction execution, before the instruction and its predeces-
sors are guaranteed to complete. For example, autoincrement addressing mode
on the VAX cause the update of registers in the middle of an instruction execu-
tion. In such a case, if the instruction is aborted because of an exception, it will
leave the machine state altered. Although we know which instruction caused the
exception, without additional hardware support the exception will be imprecise
because the instruction will be half finished. Restarting the instruction stream af-
ter such an imprecise exception is difficult. Alternatively, we could avoid updat-
ing the state before the instruction commits, but this may be difficult or costly,

186

Chapter 3 Pipelining

since there may be dependences on the updated state: Consider a VAX instruction
that autoincrements the same register multiple times. Thus, to maintain a precise
exception model, most machines with such instructions have the ability to back
out any state changes made before the instruction is committed. If an exception
occurs, the machine uses this ability to reset the state of the machine to its value
before the interrupted instruction started. In the next section, we will see that a
more powerful DLX floating-point pipeline can introduce similar problems, and
the next chapter introduces techniques that substantially complicate exception
handling.

A related source of difficulties arises from instructions that update memory
state during execution, such as the string copy operations on the VAX or 360. To
make it possible to interrupt and restart these instructions, the instructions are de-
fined to use the general-purpose registers as working registers. Thus the state of
the partially completed instruction is always in the registers, which are saved on
an exception and restored after the exception, allowing the instruction to contin-
ue. In the VAX an additional bit of state records when an instruction has started
updating the memory state, so that when the pipeline is restarted, the machine
knows whether to restart the instruction from the beginning or from the middle of
the instruction. The 80x86 string instructions also use the registers as working
storage, so that saving and restoring the registers saves and restores the state of
such instructions.

A different set of difficulties arises from odd bits of state that may create addi-
tional pipeline hazards or may require extra hardware to save and restore. Condi-
tion codes are a good example of this. Many machines set the condition codes
implicitly as part of the instruction. This approach has advantages, since condi-
tion codes decouple the evaluation of the condition from the actual branch. How-
ever, implicitly set condition codes can cause difficulties in scheduling any
pipeline delays between setting the condition code and the branch, since most in-
structions set the condition code and cannot be used in the delay slots between
the condition evaluation and the branch.

Additionally, in machines with condition codes, the processor must decide
when the branch condition is fixed. This involves finding out when the condition
code has been set for the last time before the branch. In most machines with im-
plicitly set condition codes, this is done by delaying the branch condition evalua-
tion until all previous instructions have had a chance to set the condition code.

Of course, architectures with explicitly set condition codes allow the delay be-
tween condition test and the branch to be scheduled; however, pipeline control
must still track the last instruction that sets the condition code to know when the
branch condition is decided. In effect, the condition code must be treated as an
operand that requires hazard detection for RAW hazards with branches, just as
DLX must do on the registers.

A final thorny area in pipelining is multicycle operations. Imagine trying to
pipeline a sequence of VAX instructions such as this:

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 187

MOVL RLR2
ADDL3 42(R1)56(R1)+@(R1)
SUBL2 R2R3
MOVC3 @(R1)[R2],74(R2),R3

These instructions differ radically in the number of clock cycles they will require,
from as low as one up to hundreds of clock cycles. They also require different
numbers of data memory accesses, from zero to possibly hundreds. The data haz
ards are very complex and occur both between and within instructions. The sim-
ple solution of making all instructions execute for the same number of clock
cycles is unacceptable, because it introduces an enormous number of hazards an
bypass conditions and makes an immensely long pipeline. Pipelining the VAX at
the instruction level is difficult, but a clever solution was found by the VAX 8800
designers. They pipeline tmaicroinstructionexecution: a microinstruction is a
simple instruction used in sequences to implement a more complex instruction
set. Because the microinstructions are simple (they look a lot like DLX), the
pipeline control is much easier. While it is not clear that this approach can
achieve quite as low a CPI as an instruction-level pipeline for the VAX, it is much
simpler, possibly leading to a shorter clock cycle.

In comparison, load-store machines have simple operations with similar
amounts of work and pipeline more easily. If architects realize the relationship
between instruction set design and pipelining, they can design architectures for
more efficient pipelining. In the next section we will see how the DLX pipeline
deals with long-running instructions, specifically floating-point operations.

3.7

Extending the DLX Pipeline to
Handle Multicycle Operations

We now want to explore how our DLX pipeline can be extended to handle floating-
point operations. This section concentrates on the basic approach and the design al
ternatives, closing with some performance measurements of a DLX floating-point
pipeline.

It is impractical to require that all DLX floating-point operations complete in
one clock cycle, or even in two. Doing so would mean accepting a slow clock, or
using enormous amounts of logic in the floating-point units, or both. Instead, the
floating-point pipeline will allow for a longer latency for operations. This is easi-
er to grasp if we imagine the floating-point instructions as having the same pipe-
line as the integer instructions, with two important changes. First, the EX cycle
may be repeated as many times as needed to complete the operation—the numbe
of repetitions can vary for different operations. Second, there may be multiple
floating-point functional units. A stall will occur if the instruction to be issued
will either cause a structural hazard for the functional unit it uses or cause a data
hazard.

188

Chapter 3 Pipelining

For this section, let's assume that there are four separate functional units in
our DLX implementation:

1. The main integer unit that handles loads and stores, integer ALU operations,
and branches.

2. FP and integer multiplier.
FP adder that handles FP add, subtract, and conversion.

4. FP and integer divider.

If we also assume that the execution stages of these functional units are not pipe-
lined, then Figure 3.42 shows the resulting pipeline structure. Because EX is not
pipelined, no other instruction using that functional unit may issue until the pre-
vious instruction leaves EX. Moreover, if an instruction cannot proceed to the EX
stage, the entire pipeline behind that instruction will be stalled.

EX

FP/integer
multiply

EX

FP adder

EX

FP/integer
divider

FIGURE 3.42 The DLX pipeline with three additional unpipelined, floating-point, func-
tional units. Because only one instruction issues on every clock cycle, all instructions go
through the standard pipeline for integer operations. The floating-point operations simply loop
when they reach the EX stage. After they have finished the EX stage, they proceed to MEM
and WB to complete execution.

In reality, the intermediate results are probably not cycled around the EX unit
as Figure 3.42 suggests; instead, the EX pipeline stage has some number of clock
delays larger than 1. We can generalize the structure of the FP pipeline shown in

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 189

Figure 3.42 to allow pipelining of some stages and multiple ongoing operations.
To describe such a pipeline, we must define both the latency of the functional
units and also thanitiation interval or repeat interval.We define latency the
same way we defined it earlier: the number of intervening cycles between an in-
struction that produces a result and an instruction that uses the result. The initia-
tion or repeat interval is the number of cycles that must elapse between issuing
two operations of a given type. For example, we will use the latencies and initia-
tion intervals shown in Figure 3.43.

Functional unit Latency Initiation interval
Integer ALU 0 1

Data memory (integer and FP loads) 1 1

FP add 3 1

FP multiply (also integer multiply) 6 1

FP divide (also integer divide) 24 25

FIGURE 3.43 Latencies and initiation intervals for functional units.

With this definition of latency, integer ALU operations have a latency of 0,
since the results can be used on the next clock cycle, and loads have a latency o
1, since their results can be used after one intervening cycle. Since most opera-
tions consume their operands at the beginning of EX, the latency is usually the
number of stages after EX that an instruction produces a result—for example,
zero stages for ALU operations and one stage for loads. The primary exception is
stores, which consume the value being stored one cycle later. Hence the latency
to a store for the value being stored, but not for the base address register, will be
one cycle less. Pipeline latency is essentially equal to one cycle less than the
depth of the execution pipeline, which is the number of stages from the EX stage
to the stage that produces the result. Thus, for the example pipeline just above,
the number of stages in an FP add is four, while the number of stages in an FP
multiply is seven. To achieve a higher clock rate, designers need to put fewer log-
ic levels in each pipe stage, which makes the number of pipe stages required for
more complex operations larger. The penalty for the faster clock rate is thus long-
er latency for operations.

The example pipeline structure in Figure 3.43 allows up to four outstanding
FP adds, seven outstanding FP/integer multiplies, and one FP divide. Figure 3.44
shows how this pipeline can be drawn by extending Figure 3.42. The repeat inter-
val is implemented in Figure 3.44 by adding additional pipeline stages, which
will be separated by additional pipeline registers. Because the units are indepen-
dent, we name the stages differently. The pipeline stages that take multiple clock
cycles, such as the divide unit, are further subdivided to show the latency of those
stages. Because they are not complete stages, only one operation may be active

190 Chapter 3 Pipelining

The pipeline structure can also be shown using the familiar diagrams from earlier
in the chapter, as Figure 3.45 shows for a set of independent FP operations and FP
loads and stores. Naturally, the longer latency of the FP operations increases the
frequency of RAW hazards and resultant stalls, as we will see later in this section.

Integer unit

9

FP/integer multiply

M5

FIGURE 3.44 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully pipe-
lined and have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires 24 clock cycles
to complete. The latency in instructions between the issue of an FP operation and the use of the result of that operation
without incurring a RAW stall is determined by the number of cycles spent in the execution stages. For example, the fourth
instruction after an FP add can use the result of the FP add. For integer ALU operations, the depth of the execution pipeline
is always one and the next instruction can use the results. Both FP loads and integer loads complete during MEM, which
means that the memory system must provide either 32 or 64 bits in a single clock.

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
ADDD IF ID Al A2 A3 A4 MEM WB
LD IF ID EX MEM WB
SD IF ID EX MEM WB
FIGURE 3.45 The pipeline timing of a set of independent FP operations. The stages in italics show where data is

needed, while the stages in bold show where a result is available. FP loads and stores use a 64-bit path to memory so that
the pipelining timing is just like an integer load or store.

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 191

The structure of the pipeline in Figure 3.44 requires the introduction of the ad-
ditional pipeline registers (e.g., A1/A2, A2/A3, A3/A4) and the modification of
the connections to those registers. The ID/EX register must be expanded to con-
nect ID to EX, DIV, M1, and Al; we can refer to the portion of the register asso-
ciated with one of the next stages with the notation ID/EX, ID/DIV, ID/M1, or
ID/AL. The pipeline register between ID and all the other stages may be thought
of as logically separate registers and may, in fact, be implemented as separate
registers. Because only one operation can be in a pipe stage at a time, the contro
information can be associated with the register at the head of the stage.

Hazards and Forwarding in Longer Latency Pipelines

There are a number of different aspects to the hazard detection and forwarding
for a pipeline like that in Figure 3.44:

1. Because the divide unit is not fully pipelined, structural hazards can occur.
These will need to be detected and issuing instructions will need to be stalled.

2. Because the instructions have varying running times, the number of register
writes required in a cycle can be larger than 1.

3. WAW hazards are possible, since instructions no longer reach WB in order. Note
that WAR hazards are not possible, since the register reads always occur in ID.

4. Instructions can complete in a different order than they were issued, causing
problems with exceptions; we deal with this in the next subsection.

5. Because of longer latency of operations, stalls for RAW hazards will be more
frequent.

The increase in stalls arising from longer operation latencies is fundamentally the
same as that for the integer pipeline. Before describing the new problems that
arise in this FP pipeline and looking at solutions, let's examine the potential im-
pact of RAW hazards. Figure 3.46 shows a typical FP code sequence and the re-
sultant stalls. At the end of this section, we’ll examine the performance of this FP
pipeline for our SPEC subset.

Now look at the problems arising from writes, described as (2) and (3) in the
list above. If we assume the FP register file has one write port, sequences of FP
operations, as well as an FP load together with FP operations, can cause conflicts
for the register write port. Consider the pipeline sequence shown in Figure 3.47:
In clock cycle 11, all three instructions will reach WB and want to write the regis-
ter file. With only a single register file write port, the machine must serialize the
instruction completion. This single register port represents a structural hazard.
We could increase the number of write ports to solve this, but that solution may
be unattractive since the additional write ports would be used only rarely. This is
because the maximum steady state number of write ports needed is 1. Instead, we
choose to detect and enforce access to the write port as a structural hazard.

192

Chapter 3 Pipelining

Clock cycle number

Instruction 1 2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LDF40 IF 1D
(R2)

EX MEM WB

MULTD FO, IF ID stal M1 M2 M3 M4 M5 M6 M7 MEM WB

F4,F6

ADDD F2, IF stall ID stall stall stall stall stall stall Al A2 A3 A4 MEM
FO,F8

SD 0(R2), IF stall stall stall stall stall stall ID EX stall stall stal MEM
F2

FIGURE 3.46 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-

stantially raises the frequency of stalls versus the shallower integer pipeline. Each instruction in this sequence is dependent
on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypassing and forwarding.
The SD must be stalled an extra cycle so that its MEM does not conflict with the ADDD Extra hardware could easily handle

this case.
Clock cycle number
Instruction 1 2 3 4 5 6 7 8 9 10 11
MULTD FO,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
IF ID EX MEM WB
IF ID EX MEM WB
ADDD F2,F4,F6 IF ID Al A2 A3 Ad MEM WB
IF ID EX MEM WB
IF ID EX MEM WB
LD F2,0(R2) IF ID EX MEM WB

FIGURE 3.47 Three instructions want to perform a write back to the FP register file simultaneously, as shown in

clock cycle 11. This is not the worst case, since an earlier divide in the FP unit could also finish on the same clock. Note
that although the MULTDADDDand LD all are in the MEM stage in clock cycle 10, only the LD actually uses the memory,
S0 no structural hazard exists for MEM.

There are two different ways to implement this interlock. The first is to track
the use of the write port in the ID stage and to stall an instruction before it issues,
just as we would for any other structural hazard. Tracking the use of the write
port can be done with a shift register that indicates when already-issued instruc-
tions will use the register file. If the instruction in ID needs to use the register file
at the same time as an instruction already issued, the instruction in ID is stalled
for a cycle. On each clock the reservation register is shifted one bit. This imple-
mentation has an advantage: It maintains the property that all interlock detection
and stall insertion occurs in the ID stage. The cost is the addition of the shift reg-
ister and write conflict logic. We will assume this scheme throughout this section.

An alternative scheme is to stall a conflicting instruction when it tries to enter
either the MEM or WB stage. If we wait to stall the conflicting instructions until

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 193

they want to enter the MEM or WB stage, we can choose to stall either instruc-
tion. A simple, though sometimes suboptimal, heuristic is to give priority to the
unit with the longest latency, since that is the one most likely to have caused an-
other instruction to be stalled for a RAW hazard. The advantage of this scheme is
that it does not require us to detect the conflict until the entrance of the MEM or
WB stage, where it is easy to see. The disadvantage is that it complicates pipeline
control, as stalls can now arise from two places. Notice that stalling before enter-
ing MEM will cause the EX, A4, or M7 stage to be occupied, possibly forcing the
stall to trickle back in the pipeline. Likewise, stalling before WB would cause
MEM to back up.

Our other problem is the possibility of WAW hazards. To see that these exist,
consider the example in Figure 3.47. If tiirinstruction were issued one cycle
earlier and had a destination of F2, then it would create a WAW hazard, because it
would write F2 one cycle earlier than theDD Note that this hazard only occurs
when the result of theDDDis overwrittenwithoutany instruction ever using it! If
there were a use of F2 between Am®Dand thelLD, the pipeline would need to
be stalled for a RAW hazard, and tlizwould not issue until theDDDwas com-
pleted. We could argue that, for our pipeline, WAW hazards only occur when a
useless instruction is executed, but we must still detect them and make sure that
the result of theLD appears in F2 when we are done. (As we will see in
section 3.10, such sequences sometihoaxccur in reasonable code.)

There are two possible ways to handle this WAW hazard. The first approach is
to delay the issue of the load instruction until Am®Denters MEM. The second
approach is to stamp out the result ofAb®Dby detecting the hazard and chang-
ing the control so that theDDDdoes not write its result. Then, the can issue
right away. Because this hazard is rare, either scheme will work fine—you can
pick whatever is simpler to implement. In either case, the hazard can be detected
during ID when thea.D is issuing. Then stalling théd or making theADDDa no-
op is easy. The difficult situation is to detect thatlthenight finish before the
ADDD because that requires knowing the length of the pipeline and the current po-
sition of theADDD Luckily, this code sequence (two writes with no intervening
read) will be very rare, so we can use a simple solution: If an instruction in ID
wants to write the same register as an instruction already issued, do not issue the
instruction to EX. In the next chapter, we will see how additional hardware can
eliminate stalls for such hazards. First, let’s put together the pieces for imple-
menting the hazard and issue logic in our FP pipeline.

In detecting the possible hazards, we must consider hazards among FP in-
structions, as well as hazards between an FP instruction and an integer instruc-
tion. Except for FP loads-stores and FP-integer register moves, the FP and integel
registers are distinct. All integer instructions operate on the integer registers,
while the floating-point operations operate only on their own registers. Thus, we
need only consider FP loads-stores and FP register moves in detecting hazard:
between FP and integer instructions. This simplification of pipeline control is an
additional advantage of having separate register files for integer and floating-
point data. (The main advantages are a doubling of the number of registers, with-

194

Chapter 3 Pipelining

out making either set larger, and an increase in bandwidth without adding more
ports to either set. The main disadvantage, beyond the need for an extra register
file, is the small cost of occasional moves needed between the two register sets.)
Assuming that the pipeline does all hazard detection in ID, there are three checks
that must be performed before an instruction can issue:

1.

Check for structural hazardsWait until the required functional unit is not
busy (this is only needed for divides in this pipeline) and make sure the register
write port is available when it will be needed.

Check for a RAW data hazardNait until the source registers are not listed

as pending destinations in a pipeline register that will not be available when
this instruction needs the result. A number of checks must be made here, de-
pending on both the source instruction, which determines when the result will
be available, and the destination instruction, which determines when the value
is needed. For example, if the instruction in ID is an FP operation with source
register F2, then F2 cannot be listed as a destination in ID/A1, A1/A2, or A2/A3,
which correspond to FP add instructions that will not be finished when the in-
struction in ID needs a result. (ID/A1 is the portion of the output register of ID
that is sent to Al.) Divide is somewhat more tricky, if we want to allow the
last few cycles of a divide to be overlapped, since we need to handle the case
when a divide is close to finishing as special. In practice, designers might ig-
nore this optimization in favor of a simpler issue test.

Check for a WAW data hazarddetermine if any instruction in Al,..., A4, D,
M1,..., M7 has the same register destination as this instruction. If so, stall the
issue of the instruction in ID.

Although the hazard detection is more complex with the multicycle FP opera-
tions, the concepts are the same as for the DLX integer pipeline. The same is true
for the forwarding logic. The forwarding can be implemented by checking if the
destination register in any of EX/MEM, A4/MEM, M7/MEM, D/MEM, or
MEM/WB registers is one of the source registers of a floating-point instruction.

If so, the appropriate input multiplexer will have to be enabled so as to choose the
forwarded data. In the Exercises, you will have the opportunity to specify the log-
ic for the RAW and WAW hazard detection as well as for forwarding.

Multicycle FP operations also introduce problems for our exception mecha-

nisms, which we deal with next.

Maintaining Precise Exceptions

Another problem caused by these long-running instructions can be illustrated
with the following sequence of code:

DIVF FO,F2,F4
ADDF F10,F10,F8

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 195

SUBF F12,F12,F14

This code sequence looks straightforward; there are no dependences. A problen
arises, however, because an instruction issued early may complete after an in-
struction issued later. In this example, we can expebFandSUBFto complete
beforetheDIVF completes. This is callealit-of-order completiomand is common

in pipelines with long-running operations. Because hazard detection will prevent
any dependence among instructions from being violated, why is out-of-order
completion a problem? Suppose that $tuBFcauses a floating-point arithmetic
exception at a point where ta®DFhas completed but thaivF has not. The re-

sult will be an imprecise exception, something we are trying to avoid. It may ap-
pear that this could be handled by letting the floating-point pipeline drain, as we
do for the integer pipeline. But the exception may be in a position where this is
not possible. For example, if timevF decided to take a floating-point-arithmetic
exception after the add completed, we could not have a precise exception at the
hardware level. In fact, because #igDFdestroys one of its operands, we could

not restore the state to what it was beforeDin€, even with software help.

This problem arises because instructions are completing in a different order
than they were issued. There are four possible approaches to dealing with out-of-
order completion. The first is to ignore the problem and settle for imprecise ex-
ceptions. This approach was used in the 1960s and early 1970s. It is still used in
some supercomputers, where certain classes of exceptions are not allowed or ar
handled by the hardware without stopping the pipeline. It is difficult to use this
approach in most machines built today because of features such as virtual memo-
ry and the IEEE floating-point standard, which essentially require precise excep-
tions through a combination of hardware and software. As mentioned earlier,
some recent machines have solved this problem by introducing two modes of ex-
ecution: a fast, but possibly imprecise mode and a slower, precise mode. The
slower precise mode is implemented either with a mode switch or by insertion of
explicit instructions that test for FP exceptions. In either case the amount of over-
lap and reordering permitted in the FP pipeline is significantly restricted so that
effectively only one FP instruction is active at a time. This solution is used in the
DEC Alpha 21064 and 21164, in the IBM Power-1 and Power-2, and in the MIPS
R8000.

A second approach is to buffer the results of an operation until all the opera-
tions that were issued earlier are complete. Some machines actually use this solu
tion, but it becomes expensive when the difference in running times among
operations is large, since the number of results to buffer can become large. Fur-
thermore, results from the queue must be bypassed to continue issuing instruc-
tions while waiting for the longer instruction. This requires a large number of
comparators and a very large multiplexer.

There are two viable variations on this basic approach. The firgtistaay
file, used in the CYBER 180/990. The history file keeps track of the original val-
ues of registers. When an exception occurs and the state must be rolled back ear

196

Chapter 3 Pipelining

lier than some instruction that completed out of order, the original value of the
register can be restored from the history file. A similar technique is used for auto-
increment and autodecrement addressing on machines like VAXes. Another ap-
proach, thefuture filg proposed by J. Smith and A. Pleszkun [1988], keeps the
newer value of a register; when all earlier instructions have completed, the main
register file is updated from the future file. On an exception, the main register file
has the precise values for the interrupted state. In the next chapter (section 4.6),
we will see extensions of this idea, which are used in processors such as the Pow-
erPC 620 and MIPS R10000 to allow overlap and reordering while preserving
precise exceptions.

A third technique in use is to allow the exceptions to become somewhat im-
precise, but to keep enough information so that the trap-handling routines can
create a precise sequence for the exception. This means knowing what operations
were in the pipeline and their PCs. Then, after handling the exception, the soft-
ware finishes any instructions that precede the latest instruction completed, and
the sequence can restart. Consider the following worst-case code sequence:

Instruction—A long-running instruction that eventually interrupts execution.
Instruction, ..., Instruction_1—A series of instructions that are not completed.
Instruction,—An instruction that is finished.

Given the PCs of all the instructions in the pipeline and the exception return
PC, the software can find the state of instrugtiand instructiop. Because
instruction, has completed, we will want to restart execution at instrygtion
After handling the exception, the software must simulate the execution of
instruction, ..., instructiop_1. Then we can return from the exception and re-
start at instructiog.1. The complexity of executing these instructions properly
by the handler is the major difficulty of this scheme. There is an important
simplification for simple DLX-like pipelines: If instructign..., instructiop

are all integer instructions, then we know that if instrugtioas completed, all

of instruction, ..., instructiop_; have also completed. Thus, only floating-point
operations need to be handled. To make this scheme tractable, the number of
floating-point instructions that can be overlapped in execution can be limited. For
example, if we only overlap two instructions, then only the interrupting instruc-
tion need be completed by software. This restriction may reduce the potential
throughput if the FP pipelines are deep or if there is a significant number of FP
functional units. This approach is used in the SPARC architecture to allow over-
lap of floating-point and integer operations.

The final technique is a hybrid scheme that allows the instruction issue to con-
tinue only if it is certain that all the instructions before the issuing instruction will
complete without causing an exception. This guarantees that when an exception
occurs, no instructions after the interrupting one will be completed and all of the
instructions before the interrupting one can be completed. This sometimes means
stalling the machine to maintain precise exceptions. To make this scheme work,

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 197

the floating-point functional units must determine if an exception is possible ear-
ly in the EX stage (in the first three clock cycles in the DLX pipeline), so as to
prevent further instructions from completing. This scheme is used in the MIPS
R2000/3000, the R4000, and the Intel Pentium. It is discussed further in
Appendix A.

Performance of a DLX FP Pipeline

The DLX FP pipeline of Figure 3.44 on page 190 can generate both structural
stalls for the divide unit and stalls for RAW hazards (it also can have WAW haz-
ards, but this rarely occurs in practice). Figure 3.48 shows the number of stall cy-
cles for each type of floating-point operation on a per instance basis (i.e., the first
bar for each FP benchmark shows the number of FP result stalls for each FP add
subtract, or compare). As we might expect, the stall cycles per operation track the
latency of the FP operations, varying from 46% to 59% of the latency of the func-
tional unit.

Figure 3.49 gives the complete breakdown of integer and floating-point stalls
for the five FP SPEC benchmarks we are using. There are four classes of stalls
shown: FP result stalls, FP compare stalls, load and branch delays, and floating-
point structural delays. The compiler tries to schedule both load and FP delays
before it schedules branch delays. The total number of stalls per instruction varies
from 0.65 to 1.21.

198

Chapter 3 Pipelining

doduc

ear

FPSPEC pgrond
benchmarks

mdijdp
245

su2cor

0.0 5.0 10.0 15.0 20.0 25.0
Number of stalls

B Multiply

Il Add/subtract/convert |:| Compares

I Divide Divide structural

FIGURE 3.48 Stalls per FP operation for each major type of FP operation. Except for
the divide structural hazards, these data do not depend on the frequency of an operation, only
on its latency and the number of cycles before the result is used. The number of stalls from
RAW hazards roughly tracks the latency of the FP unit. For example, the average number of
stalls per FP add, subtract, or convertis 1.7 cycles, or 56% of the latency (3 cycles). Likewise,
the average number of stalls for multiplies and divides are 2.8 and 14.2, respectively, or 46%
and 59% of the corresponding latency. Structural hazards for divides are rare, since the di-
vide frequency is low.

3.8 Crosscutting Issues: Instruction Set Design and Pipelining 199

doduc

ear

FP SPEC

benchmarks hydro2d

mdljdp

su2cor

0.00 0.10 020 030 040 050 060 070 0.80 090 1.00
Number of stalls

Il FP result stalls |:| FP compare stalls

[Branch/load stalls [l FP structural

FIGURE 3.49 The stalls occurring for the DLX FP pipeline for the five FP SPEC bench-
marks. The total number of stalls per instruction ranges from 0.65 for su2cor to 1.21 for
doduc, with an average of 0.87. FP result stalls dominate in all cases, with an average of 0.71
stalls per instruction or 82% of the stalled cycles. Compares generate an average of 0.1 stalls
per instruction and are the second largest source. The divide structural hazard is only signif-
icant for doduc.

Crosscutting Issues:
Instruction Set Design and Pipelining

For many years the interaction between instruction sets and implementations was
believed to be small, and implementation issues were not a major focus in de-
signing instruction sets. In the 1980s it became clear that the difficulty and ineffi-
ciency of pipelining could both be increased by instruction set complications.
Here are some examples, many of which are mentioned earlier in the chapter:

« Variable instruction lengths and running times can lead to imbalance among
pipeline stages, causing other stages to back up. They also severely complicate
hazard detection and the maintenance of precise exceptions. Of course, some:

200

Chapter 3 Pipelining

times the advantages justify the added complexity. For example, caches cause
instruction running times to vary when they miss; however, the performance
advantages of caches make the added complexity acceptable. To minimize the
complexity, most machines freeze the pipeline on a cache miss. Other ma-
chines try to continue running parts of the pipeline; though this is complex, it
may overcome some of the performance losses from cache misses.

« Sophisticated addressing modes can lead to different sorts of problems. Ad-
dressing modes that update registers, such as post-autoincrement, complicate
hazard detection. They also slightly increase the complexity of instruction re-
start. Other addressing modes that require multiple memory accesses sub-
stantially complicate pipeline control and make it difficult to keep the pipeline
flowing smoothly.

« Architectures that allow writes into the instruction space (self-modifying
code), such as the 80x86, can cause trouble for pipelining (as well as for cache
designs). For example, if an instruction in the pipeline can modify another in-
struction, we must constantly check if the address being written by an instruc-
tion corresponds to the address of an instruction following the instruction that
writes in the pipeline. If so, the pipeline must be flushed or the instruction in
the pipeline somehow updated.

« Implicitly set condition codes increase the difficulty of finding when a branch
has been decided and the difficulty of scheduling branch delays. The former
problem occurs when the condition-code setting is not uniform, making it dif-
ficult to decide which instruction assigns the condition code last. The latter
problem occurs when the condition code is unconditionally set by almost every
instruction. This makes it hard to find instructions that can be scheduled be-
tween the condition evaluation and the branch. Most older architectures (the
IBM 360, the DEC VAX, and the Intel 80x86, for example) have one or both
of these problems. Many newer architectures avoid condition codes or set them
explicitly under the control of a bit in the instruction. Either approach dramat-
ically reduces pipelining difficulties.

As a simple example, suppose the DLX instruction format were more com-
plex, so that a separate, decode pipe stage were required before register fetch.
This would increase the branch delay to two clock cycles. At best, the second
branch-delay slot would be wasted at least as often as the first. Gross [1983]
found that a second delay slot was only used half as often as the first. This would
lead to a performance penalty for the second delay slot of more than 0.1 clock cy-
cles per instruction. Another example comes from a comparison of the pipeline
efficiencies of a VAX 8800 and a MIPS R3000. Although these two machines
have many similarities in organization, the VAX instruction set was not designed
with pipelining in mind. As a result, on the SPEC89 benchmarks, the MIPS
R3000 is faster by between two times and four times, with a mean performance
advantage of 2.7 times.

3.9 Putting It All Together: The MIPS R4000 Pipeline 201

3.9

Putting It All Together:
The MIPS R4000 Pipeline

In this section we look at the pipeline structure and performance of the MIPS
R4000 processor family. The MIPS-3 instruction set, which the R4000 imple-
ments, is a 64-bit instruction set similar to DLX. The R4000 uses a deeper pipe-
line than that of our DLX model both for integer and FP programs. This deeper
pipeline allows it to achieve higher clock rates (100—200 MHz) by decomposing
the five-stage integer pipeline into eight stages. Because cache access is particu
larly time critical, the extra pipeline stages come from decomposing the memory
access. This type of deeper pipelining is sometimes cguieerpipelining

Figure 3.50 shows the eight-stage pipeline structure using an abstracted ver-
sion of the datapath. Figure 3.51 shows the overlap of successive instructions in
the pipeline. Notice that although the instruction and data memory occupy multi-
ple cycles, they are fully pipelined, so that a new instruction can start on every
clock. In fact, the pipeline uses the data before the cache hit detection is com-
plete; Chapter 5 discusses how this can be done in more detail.

Instruction memory Reg | : Data memory: : Reg

FIGURE 3.50 The eight-stage pipeline structure of the R4000 uses pipelined instruc-

tion and data caches. The pipe stages are labeled and their detailed function is described
in the text. The vertical dashed lines represent the stage boundaries as well as the location
of pipeline latches. The instruction is actually available at the end of IS, but the tag check is
done in RF, while the registers are fetched. Thus, we show the instruction memory as oper-
ating through RF. The TC stage is needed for data memory access, since we cannot write the
data into the register until we know whether the cache access was a hit or not.

The function of each stage is as follows:

« |IF—First half of instruction fetch; PC selection actually happens here, together
with initiation of instruction cache access.

« IS—Second half of instruction fetch, complete instruction cache access.

« RF—Instruction decode and register fetch, hazard checking, and also instruc-
tion cache hit detection.

202 Chapter 3 Pipelining

« EX—Execution, which includes effective address calculation, ALU operation,
and branch target computation and condition evaluation.

« DF—Data fetch, first half of data cache access.

« DS—Second half of data fetch, completion of data cache access.
« TC—Tag check, determine whether the data cache access hit.

« WB—Write back for loads and register-register operations.

In addition to substantially increasing the amount of forwarding required, this
longer latency pipeline increases both the load and branch delays. Figure 3.51
shows that load delays are two cycles, since the data value is available at the end
of DS. Figure 3.52 shows the shorthand pipeline schedule when a use immediate-

ly follows a load. It shows that forwarding is required for the result of a load in-
struction to a destination that is three or four cycles later.

Time (in clock cycles)

cci1 . cc2 . cc3 . cc4 . cC5 . cce . cc7T . cCcs . cCCY9 . cCc10 . cc11

Data memory :
: [: :
éata memory

LW R1

Instruction 1

Instruction 2

ADD R2, R1

FIGURE 3.51 The structure of the R4000 integer pipeline leads to a two-cycle load delay. A two-cycle delay is pos-
sible because the data value is available at the end of DS and can be bypassed. If the tag check in TC indicates a miss, the
pipeline is backed up a cycle, when the correct data are available.

Figure 3.53 shows that the basic branch delay is three cycles, since the branch
condition is computed during EX. The MIPS architecture has a single-cycle de-
layed branch. The R4000 uses a predict-not-taken strategy for the remaining two
cycles of the branch delay. As Figure 3.54 shows, untaken branches are simply
one-cycle delayed branches, while taken branches have a one-cycle delay slot

3.9 Putting It All Together: The MIPS R4000 Pipeline 203

Clock number
Instruction number 1 2 3 4 5 6 7 8 9
LWRY,... IF IS RF EX DF DS TC wWB
ADDR2R1L,... IF IS RF stall stall EX DF DS
SUBR3RR]L,... IF IS stall stall RF EX DF
ORR4,RRY,... IF stall stall IS RF EX
FIGURE 3.52 A load instruction followed by an immediate use results in a two-cycle stall. Normal forwarding paths

can be used after two cycles, so the ADDand SUBget the value by forwarding after the stall. The ORinstruction gets the
value from the register file. Since the two instructions after the load could be independent and hence not stall, the bypass
can be to instructions that are three or four cycles after the load.

followed by two idle cycles. The instruction set provides a branch likely instruc-

tion, which we described earlier and which helps in filling the branch delay slot.
Pipeline interlocks enforce both the two-cycle branch stall penalty on a taken
branch and any data hazard stall that arises from use of a load result.

Time (in clock cycles)

ccT . cc2 . cc3 . cc4 . CC5 . cCB ;. CCT . cc8 . CCO . cC0 : cCcnn

Instruction memory Data memory
Instruction memory
Instruction memory f+

BEQZ

Instruction 1

Instruction 2

Data memory :
-ﬁ-a j Data memory

s I

Instruction 3

FIGURE 3.53 The basic branch delay is three cycles, since the condition evaluation is performed during EX.

204

Chapter 3 Pipelining

Clock number

Instruction number 2 3 4 5 6 7 8 9
Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB
Stall stall stall stall stall stall stall stall
Stall stall stall stall stall stall stall
Branch target IF IS RF EX DF

Clock number

Instruction number 2 3 4 5 6 7 8 9
Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB
Branch instruction + 2 IF IS RF EX DF DS TC
Branch instruction + 3 IF IS RF EX DF DS

FIGURE 3.54 A taken branch, shown in the top portion of the figure, has a one-cycle delay slot followed by a two-

cycle stall, while an untaken branch, shown in the bottom portion, has simply a one-cycle delay slot.

The branch

instruction can be an ordinary delayed branch or a branch-likely, which cancels the effect of the instruction in the delay slot

if the branch is untaken.

In addition to the increase in stalls for loads and branches, the deeper pipeline
increases the number of levels of forwarding for ALU operations. In our DLX
five-stage pipeline, forwarding between two register-register ALU instructions
could happen from the ALU/MEM or the MEM/WB registers. In the R4000 pipe-
line, there are four possible sources for an ALU bypass: EX/DF, DF/DS, DS/TC,
and TC/WB. The Exercises ask you to explore all the possible forwarding condi-
tions for the DLX instruction set using an R4000-style pipeline.

The Floating-Point Pipeline

The R4000 floating-point unit consists of three functional units: a floating-point
divider, a floating-point multiplier, and a floating-point adder. As in the R3000,
the adder logic is used on the final step of a multiply or divide. Double-precision
FP operations can take from two cycles (for a negate) up to 112 cycles for a
square root. In addition, the various units have different initiation rates. The
floating-point functional unit can be thought of as having eight different stages,
listed in Figure 3.55.

3.9 Putting It All Together: The MIPS R4000 Pipeline 205

Stage Functional unit Description
A FP adder Mantissa ADD stage
D FP divider Divide pipeline stage
E FP multiplier Exception test stage
M FP multiplier First stage of multiplier
N FP multiplier Second stage of multiplier
R FP adder Rounding stage
S FP adder Operand shift stage
U Unpack FP numbers

FIGURE 3.55 The eight stages used in the R4000 floating-point pipelines.

There is a single copy of each of these stages, and various instructions may use
stage zero or more times and in different orders. Figure 3.56 shows the latency,
initiation rate, and pipeline stages used by the most common double-precision FP

operations.
FP instruction Latency Initiation interval Pipe stages
Add, subtract 4 3 U,S+AA+R,R+S
Multiply 8 4 U,E+M,M,M,M,N,N+A,R
Divide 36 35 U,AR,D?",D+AD+R,D+AD+R,AR
Square root 112 111 U,E,(A+R}108 A R
Negate 2 1 u,S
Absolute value 2 1 U,S
FP compare 3 2 UAR

FIGURE 3.56 The latencies and initiation intervals for the FP operations both depend on the FP unit stages that a

given operation mustuse. The latency values assume that the destination instruction is an FP operation; the latencies are
one cycle less when the destination is a store. The pipe stages are shown in the order in which they are used for any oper-
ation. The notation S+A indicates a clock cycle in which both the S and A stages are used. The notation D indicates that
the D stage is used 28 times in a row.

From the information in Figure 3.56, we can determine whether a sequence of
different, independent FP operations can issue without stalling. If the timing of
the sequence is such that a conflict occurs for a shared pipeline stage, then a sta
will be needed. Figures 3.57, 3.58, 3.59, and 3.60 show four common possible
two-instruction sequences: a multiply followed by an add, an add followed by a
multiply, a divide followed by an add, and an add followed by a divide. The fig-
ures show all the interesting starting positions for the second instruction and

206 Chapter 3 Pipelining

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12
Multiply Issue u M M M M N N+A R
Add Issue U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+tA A+R R+S

Stall u S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

FIGURE 3.57 An FP multiply issued at clock 0 is followed by a single FP add issued between clocks 1 and 7. The
second column indicates whether an instruction of the specified type stalls when it is issued n cycles later, where n is the
clock cycle number in which the U stage of the second instruction occurs. The stage or stages that cause a stall are high-
lighted. Note that this table deals with only the interaction between the multiply and one add issued between clocks 1 and
7. In this case, the add will stall if it is issued four or five cycles after the multiply; otherwise, it issues without stalling. Notice
that the add will be stalled for two cycles if it issues in cycle 4 since on the next clock cycle it will still conflict with the multiply;
if, however, the add issues in cycle 5, it will stall for only one clock cycle, since that will eliminate the conflicts.

Clock cycle
Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12
Add Issue U S+A A+R R+S
Multiply Issue U M M M M N N+tA R
Issue U M M M M N N+A R

FIGURE 3.58 A multiply issuing after an add can always proceed without stalling, since the shorter instruction
clears the shared pipeline stages before the longer instruction reaches them.

whether that second instruction will issue or stall for each position. Of course,
there could be three instructions active, in which case the possibilities for stalls
are much higher and the figures more complex.

3.9 Putting It All Together: The MIPS R4000 Pipeline 207

Clock cycle
Operation Issue/stall 25 26 27 28 29 30 31 32 33 34 35 36
Divide issuedin D D D D D D+A D+R D+A D+R A R
cycle 0...
Add Issue U S+A A+R R+S
Issue U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+tA A+R R+S
Issue U S+A A+R
Issue U S+A
Issue U
FIGURE 3.59 An FP divide can cause a stall for an add that starts near the end of the divide. The divide starts at

cycle 0 and completes at cycle 35; the last 10 cycles of the divide are shown. Since the divide makes heavy use of the round-
ing hardware needed by the add, it stalls an add that starts in any of cycles 28 to 33. Notice the add starting in cycle 28 will
be stalled until cycle 34. If the add started right after the divide it would not conflict, since the add could complete before the
divide needed the shared stages, just as we saw in Figure 3.58 for a multiply and add. As in the earlier figure, this example
assumes exactly one add that reaches the U stage between clock cycles 26 and 35.

Clock cycle
Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12
Add Issue U S+A A+R R+S
Divide Stall U A R b D D D D D D D D
Issue U A R D D D D D D D D
Issue U A R D D D D D D D
FIGURE 3.60 A double-precision add is followed by a double-precision divide. If the divide starts one cycle after the

add, the divide stalls, but after that there is no conflict.

Performance of the R4000 Pipeline

In this section we examine the stalls that occur for the SPEC92 benchmarks when
running on the R4000 pipeline structure. There are four major causes of pipeline
stalls or losses:

1. Load stalls—Delays arising from the use of a load result one or two cycles
after the load.

208 Chapter 3 Pipelining

2. Branch stalls—Two-cycle stall on every taken branch plus unfilled or can-
celled branch delay slots.

3. FP result stalls—Stalls because of RAW hazards for an FP operand.
4. FP structural stalls—Delays because of issue restrictions arising from con-
flicts for functional units in the FP pipeline.

Figure 3.61 shows the pipeline CPI breakdown for the R4000 pipeline for the 10
SPEC92 benchmarks. Figure 3.62 shows the same data but in tabular form.

B0 [

Pipeline CPI

3] O L N @ B O $
ESTEL S » & @/@5\\& o

RS @8‘ R

SPEC92 benchmark

Ml Base [| Loadstalls [l Branch stalls

I FP result stalls FP structural stalls

FIGURE 3.61 The pipeline CPI for 10 of the SPEC92 benchmarks, assuming a perfect
cache. The pipeline CPI varies from 1.2 to 2.8. The leftmost five programs are integer pro-
grams, and branch delays are the major CPI contributor for these. The rightmost five pro-
grams are FP, and FP result stalls are the major contributor for these.

3.10 Fallacies and Pitfalls 209

Benchmark Pipeline CPI Load stalls Branch stalls FP result stalls FP structural stalls
compress 1.20 0.14 0.06 0.00 0.00
egntott 1.88 0.27 0.61 0.00 0.00
espresso 1.42 0.07 0.35 0.00 0.00

gcc 1.56 0.13 0.43 0.00 0.00

li 1.64 0.18 0.46 0.00 0.00
Integer average 154 0.16 0.38 0.00 0.00
doduc 2.84 0.01 0.22 1.39 0.22
mdljdp2 2.66 0.01 0.31 1.20 0.15

ear 2.17 0.00 0.46 0.59 0.12
hydro2d 2.53 0.00 0.62 0.75 0.17
su2cor 2.18 0.02 0.07 0.84 0.26

FP average 2.48 0.01 0.33 0.95 0.18
Overall average 2.00 0.10 0.36 0.46 0.09
FIGURE 3.62 The total pipeline CPI and the contributions of the four major sources of stalls are shown. The major

contributors are FP result stalls (both for branches and for FP inputs) and branch stalls, with loads and FP structural stalls

adding less.

From the data in Figures 3.61 and 3.62, we can see the penalty of the deepel
pipelining. The R4000’s pipeline has much longer branch delays than the five-
stage DLX-style pipeline. The longer branch delay substantially increases the cy-
cles spent on branches, especially for the integer programs with a higher branch
frequency. An interesting effect for the FP programs is that the latency of the FP
functional units leads to more stalls than the structural hazards, which arise both
from the initiation interval limitations and from conflicts for functional units
from different FP instructions. Thus, reducing the latency of FP operations
should be the first target, rather than more pipelining or replication of the func-
tional units. Of course, reducing the latency would probably increase the structur-
al stalls, since many potential structural stalls are hidden behind data hazards.

3.10

| Fallacies and Pitfalls
Pitfall: Unexpected execution sequences may cause unexpected hazards.

At first glance, WAW hazards look like they should never occur because no com-
piler would ever generate two writes to the same register without an intervening
read. But they can occur when the sequence is unexpected. For example, the firs
write might be in the delay slot of a taken branch when the scheduler thought the
branch would not be taken. Here is the code sequence that could cause this:

210

Chapter 3 Pipelining

BNEZ R1.foo
DIVD FO,F2,F4 ; moved into delay slot
; from fall through

foo: LD FO,qrs

If the branch is taken, then before /D can complete, theD will reach WB,
causing a WAW hazard. The hardware must detect this and may stall the issue of
the LD. Another way this can happen is if the second write is in a trap routine.
This occurs when an instruction that traps and is writing results continues and
completes after an instruction that writes the same register in the trap handler.
The hardware must detect and prevent this as well.

Pitfall: Extensive pipelining can impact other aspects of a design, leading to
overall worse cost/performance.

The best example of this phenomenon comes from two implementations of the
VAX, the 8600 and the 8700. When the 8600 was initially delivered, it had a cy-
cle time of 80 ns. Subsequently, a redesigned version, called the 8650, with a 55-
ns clock was introduced. The 8700 has a much simpler pipeline that operates at
the microinstruction level, yielding a smaller CPU with a faster clock cycle of 45
ns. The overall outcome is that the 8650 has a CPI advantage of about 20%, but
the 8700 has a clock rate that is about 20% faster. Thus, the 8700 achieves the
same performance with much less hardware.

Fallacy: Increasing the number of pipeline stages always increases perfor-
mance.

Two factors combine to limit the performance improvement gained by pipelining.
Limited parallelism in the instruction stream means that increasing the number of
pipeline stages, called the pipeline depth, will eventually increase the CPI, due to
dependences that require stalls. Second, clock skew and latch overhead combine
to limit the decrease in clock period obtained by further pipelining. Figure 3.63
shows the trade-off between the number of pipeline stages and performance for
the first 14 of the Livermore Loops. The performance flattens out when the num-
ber of pipeline stages reaches 4 and actually drops when the execution portion is
pipelined 16 deep. Although this study is limited to a small set of FP programs,
the trade-off of increasing CPI versus increasing clock rate by more pipelining
arises constantly.

Pitfall: Evaluating a compile-time scheduler on the basis of unoptimized code.

Unoptimized code—containing redundant loads, stores, and other operations that
might be eliminated by an optimizer—is much easier to schedule than “tight” op-
timized code. This holds for scheduling both control delays (with delayed

3.11 Concluding Remarks 211

30
25
20
Relative i
performance 1.5
10
0.5 | .
0.0
1 2 4 8 16
Pipeline depth

FIGURE 3.63 The depth of pipelining versus the speedup obtained. The x-axis shows
the number of stages in the EX portion of the floating-point pipeline. A single-stage pipeline
corresponds to 32 levels of logic, which might be appropriate for a single FP operation. Data
based on Table 2 in Kunkel and Smith [1986].

branches) and delays arising from RAW hazards. In gcc running on an R3000,
which has a pipeline almost identical to that of DLX, the frequency of idle clock
cycles increases by 18% from the unoptimized and scheduled code to the opti-
mized and scheduled code. Of course, the optimized program is much faster,
since it has fewer instructions. To fairly evaluate a scheduler you must use opti-
mized code, since in the real system you will derive good performance from other
optimizations in addition to scheduling.

3.11 | Concluding Remarks

Pipelining has been and is likely to continue to be one of the most important tech-
nigues for enhancing the performance of processors. Improving performance via
pipelining was the key focus of many early computer designers in the late 1950s
through the mid 1960s. In the late 1960s through the late 1970s, the attention of
computer architects was focused on other things, including the dramatic improve-
ments in cost, size, and reliability that were achieved by the introduction of inte-
grated circuit technology. In this period pipelining played a secondary role in
many designs. Since pipelining was not a primary focus, many instruction sets
designed in this period made pipelining overly difficult and reduced its payoff.
The VAX architecture is perhaps the best example.

In the late 1970s and early 1980s several researchers realized that instruction
set complexity and implementation ease, particularly ease of pipelining, were re-
lated. The RISC movement led to a dramatic simplification in instruction sets that
allowed rapid progress in the development of pipelining techniques. As we will

212

Chapter 3 Pipelining

see in the next chapter, these technigues have become extremely sophisticated.
The sophisticated implementation techniques now in use in many designs would
have been extremely difficult with the more complex architectures of the 1970s.

In this chapter, we introduced the basic ideas in pipelining and looked at some
simple compiler strategies for enhancing performance. The pipelined micropro-
cessors of the 1980s relied on these strategies, with the R4000-style machine rep-
resenting one of the most advanced of the “simple” pipeline organizations. To
further improve performance in this decade most microprocessors have intro-
duced schemes such as hardware-based pipeline scheduling, dynamic branch pre-
diction, the ability to issue more than one instruction in a cycle, and the use of
more powerful compiler technology. These more advanced techniques are the
subject of the next chapter.

3. 12 | Historical Perspective and References

This section describes some of the major advances in pipelining and ends with
some of the recent literature on high-performance pipelining.

The first general-purpose pipelined machine is considered to be Stretch, the
IBM 7030. Stretch followed the IBM 704 and had a goal of being 100 times fast-
er than the 704. The goal was a stretch from the state of the art at that time—
hence the nickname. The plan was to obtain a factor of 1.6 from overlapping
fetch, decode, and execute, using a four-stage pipeline. Bloch [1959] and
Bucholtz [1962] describe the design and engineering trade-offs, including the use
of ALU bypasses. The CDC 6600, developed in the early 1960s, also introduced
several enhancements in pipelining; these innovations and the history of that de-
sign are discussed in the next chapter.

A series of general pipelining descriptions that appeared in the late 1970s and
early 1980s provided most of the terminology and described most of the basic
techniques used in simple pipelines. These surveys include Keller [1975], Ra-
mamoorthy and Li [1977], Chen [1980], and Kogge’s book [1981], devoted en-
tirely to pipelining. Davidson and his colleagues [1971, 1975] developed the
concept of pipeline reservation tables as a design methodology for multicycle
pipelines with feedback (also described in Kogge [1981]). Many designers use a
variation of these concepts, as we did in sections 3.2 and 3.3.

The RISC machines were originally designed with ease of implementation
and pipelining in mind. Several of the early RISC papers, published in the early
1980s, attempt to quantify the performance advantages of the simplification in in-
struction set. The best analysis, however, is a comparison of a VAX and a MIPS
implementation published by Bhandarkar and Clark in 1991, 10 years after the
first published RISC papers. After 10 years of arguments about the implementa-
tion benefits of RISC, this paper convinced even the most skeptical designers of
the advantages of a RISC instruction set architecture.

3.12 Historical Perspective and References 213

The RISC machines refined the notion of compiler-scheduled pipelines in the
early 1980s, though earlier work on this topic is described at the end of the next
chapter. The concepts of delayed branches and delayed loads—common in mi-
croprogramming—were extended into the high-level architecture. The Stanford
MIPS architecture made the pipeline structure purposely visible to the compiler
and allowed multiple operations per instruction. Simple schemes for scheduling
the pipeline in the compiler were described by Sites [1979] for the Cray, by Hen-
nessy and Gross [1983] (and in Gross's thesis [1983]), and by Gibbons and
Muchnik [1986]. More advanced techniques will be described in the next chapter.
Rymarczyk [1982] describes the interlock conditions that programmers should
be aware of for a 360-like machine; this paper also shows the complex interaction
between pipelining and an instruction set not designed to be pipelined. Static
branch prediction by profiling has been explored by McFarling and Hennessy
[1986] and by Fisher and Freudenberger [1992].

J. E. Smith and his colleagues have written a number of papers examining in-
struction issue, exception handling, and pipeline depth for high-speed scalar ma-
chines. Kunkel and Smith [1986] evaluate the impact of pipeline overhead and
dependences on the choice of optimal pipeline depth; they also have an excellent
discussion of latch design and its impact on pipelining. Smith and Pleszkun [1988]
evaluate a variety of techniques for preserving precise exceptions. Weiss and
Smith [1984] evaluate a variety of hardware pipeline scheduling and instruction-
issue techniques.

The MIPS R4000, in addition to being one of the first deeply pipelined micro-
processors, was the first true 64-bit architecture. It is described by Killian [1991]
and by Heinrich [1993]. The initial Alpha implementation (the 21064) has a simi-
lar instruction set and similar integer pipeline structure, with more pipelining in
the floating-point unit.

References

BHANDARKAR, D. AND D. W. Q.ARK [1991]. “Performance from architecture: Comparing a RISC
and a CISC with similar hardware organizatior&dc. Fourth Conf. on Architectural Support for
Programming Languages and Operating SystdEEE/ACM (April), Palo Alto, Calif., 316319.

BLocH, E. [1959]. “The engineering design of the Stretch compukngt. Fall Joint Computer
Conf.,48-59.

BucHoLTZ, W. [1962].Planning a Computer System: Project StretdicGraw-Hill, New York.

CHEN, T. C. [1980]. “Overlap and parallel processing,Iniroduction to Computer Architecturgl.
Stone, ed., Science Research Associates, Chicago, 427—-486.

CLARK, D. W. [1987]. “Pipelining and performance in the VAX 8800 proces$unt. Second Conf.
on Architectural Support for Programming Languages and Operating Sysi&B&/ACM
(March), Palo Alto, Calif., 173-177.

DAvIDSON, E. S. [1971]. “The design and control of pipelined function generaterse¢. Conf. on
Systems, Networks, and ComputdE&E (January), Oaxtepec, Mexico, 19-21.

DAVIDSON, E. S., A. T. HOMAS, L. E. $4AR, AND J. H. RATEL [1975]. “Effective control for pipe-
lined processors COMPCON, IEEEMarch), San Francisco, 181-184.

EARLE, J. G. [1965]. “Latched carry-save addéBM Technical Disclosure Bulll (March), 909-910.

214

Chapter 3 Pipelining

EMER, J. SAND D. W. Q.ARK [1984]. “A characterization of processor performance in the VAX-11/
780,” Proc. 11th Symposium on Computer Architec{Utee), Ann Arbor, Mich., 301-310.

FISHER, J.AND FREUDENBERGER S. [1992]. “Predicting conditional branch directions from previous
runs of a program,Proc. Fifth Conf. on Architectural Support for Programming Languages and
Operating System$&EEE/ACM (October), Boston, 85-95.

GIBBONS, P. B.AND S. S. MUCHNIK [1986]. “Efficient instruction scheduling for a pipelined proces-
sor,” SIGPLAN ‘86 Symposium on Compiler Construct®@M (June), Palo Alto, Calif., +416.

GROsS T. R. [1983].Code Optimization of Pipeline ConstrainB).D. Thesis (December), Comput-
er Systems Lab., Stanford Univ.

HEINRICH, J. [1993]MIPS R4000 User’'s ManuaRrentice Hall, Englewood Cliffs, N.J.

HENNESSY, J. L.AND T. R. QROSS[1983]. “Postpass code optimization of pipeline constraitt€M
Trans. on Programming Languages and Syste®igJuly), 422448.

IBM [1990]. “The IBM RISC System/6000 processor” (collection of papéBs), J. of Research and
Developmen84:1 (January).

KELLER R. M. [1975]. “Look-ahead processors®dCM Computing Surveyg:.4 (December), 177—
195.

KILLIAN , E. [1991]. “MIPS R4000 technical overview—64 bits/100 MHz or bidt’ Chips I11Sym-
posium Recor@August), Stanford University, 1.6-1.19.

KOGGE P. M. [1981].The Architecture of Pipelined ComputefgGraw-Hill, New York.

KUNKEL, S. R.AND J. E. $ITH [1986]. “Optimal pipelining in supercomputer®toc. 13th Sym-
posium on Computer Architectuféune), Tokyo, 404—414.

MCFARLING, S.AND J. L. HENNESSY[1986]. “Reducing the cost of brancheBybc. 13th Symposium
on Computer Architectur@une), Tokyo, 396-403.

RAMAMOORTHY, C. V.AND H. F. L [1977]. “Pipeline architecture ACM Computing Survey&1
(March), 61-102.

RymARczyK, J. [1982]. “Coding guidelines for pipelined processoRgc. Symposium on Archi-
tectural Support for Programming Languages and Operating SystEfE/ACM (March), Palo
Alto, Calif., 12-19.

SITES, R. [1979]. Instruction Ordering for the CRAY-1 Computdiech. Rep. 78-CS-023 (July),
Dept. of Computer Science, Univ. of Calif., San Diego.

SMITH, J. E.AAND A. R. RLEESZKUN [1988]. “Implementing precise interrupts in pipelined processors,”
IEEE Trans. on ComputeB7:5 (May), 562-573.

WEISS S.AND J. E. S1ITH [1984]. “Instruction issue logic for pipelined supercomputefPsgc. 11th
Symposium on Computer Architect@dene), Ann Arbor, Mich., 110-118.

EXERCISES

3.1 [15/15/15] <3.4,3.5> Use the following code fragment:

loop: LW R1,0(R2)
ADDI R1,R1#1
SwW 0(R2),R1

ADDI R2,R2,#4
SuB R4,R3,R2
BNEZ R4,Loop

Exercises 215

Assume that the initial value of R3 is R2 + 396.

Throughout this exercise use the DLX integer pipeline and assume all memory accesses are
cache hits.

a. [15] <3.4,3.5> Show the timing of this instruction sequence for the DLX pipeline
withoutany forwarding or bypassing hardware but assuming a register read and a write
in the same clock cycle “forwards” through the register file, as in Figure 3.10. Use a
pipeline timing chart like Figure 3.14 or 3.15. Assume that the branch is handled by
flushing the pipeline. If all memory references hit in the cache, how many cycles does
this loop take to execute?

b. [15] <3.4,3.5> Show the timing of this instruction sequence for the DLX pipeline with
normalforwarding and bypassing hardware. Use a pipeline timing chart like Figure
3.14 or 3.15. Assume that the branch is handled by predicting it as not taken. If all
memory references hit in the cache, how many cycles does this loop take to execute?

c. [15] <3.4,3.5> Assuming the DLX pipeline with a single-cycle delayed branch and
normal forwarding and bypassing hardware, schedule the instructions in the loop in-
cluding the branch-delay slot. You may reorder instructions and modify the individual
instruction operands, but do not undertake other loop transformations that change the
number or opcode of the instructions in the loop (that's for the next chapter!). Show a
pipeline timing diagram and compute the number of cycles needed to execute the en-
tire loop.

3.2 [15/15/15] <3.4,3.5,3.7%se the following code fragment:

Loop: LD F0,0(R2)
LD F4,0(R3)
MULTD FO,FO,F4
ADDD F2,FO,F2
ADDI R2,R2#8
ADDI R3,R3,#8
SuB R5,R4,R2
BNEZ R5,Loop

Assume that the initial value of R4 is R2 + 792.

For this exercise assume the standard DLX integer pipeline (as shown in Figure 3.10) and
the standard DLX FP pipeline as described in Figures 3.43 and 3.44. If structural hazards
are due to write-back contention, assume the earliest instruction gets priority and other in-
structions are stalled.

a. [15]<3.4,3.5,3.7> Show the timing of this instruction sequence for the DLX FP pipe-
line withoutany forwarding or bypassing hardware but assuming a register read and a
write in the same clock cycle “forwards” through the register file, as in Figure 3.10.
Use a pipeline timing chart like Figure 3.14 or 3.15. Assume that the branch is han-
dled by flushing the pipeline. If all memory references hit in the cache, how many
cycles does this loop take to execute?

216

Chapter 3 Pipelining

b. [15] <3.4,3.5,3.7> Show the timing of this instruction sequence for the DLX FP pipe-
line with normalfforwarding and bypassing hardware. Use a pipeline timing chart like
Figure 3.14 or 3.15. Assume that the branch is handled by predicting it as not taken. If
all memory references hit in the cache, how many cycles does this loop take to
execute?

c. [15]<3.4,3.5,3.7> Assuming the DLX FP pipeline with a single-cycle delayed branch
and full bypassing and forwarding hardware, schedule the instructions in the loop in-
cluding the branch-delay slot. You may reorder instructions and modify the individual
instruction operands, but do not undertake other loop transformations that change the
number or opcode of the instructions in the loop (that's for the next chapter!). Show a
pipeline timing diagram and compute the time needed in cycles to execute the entire
loop.

3.3 [12/13/20/20/15/15] <3.2,3.4,3.5> For these problems, we will explore a pipeline for a
register-memory architecture. The architecture has two instruction formats: a register-
register format and a register-memory format. There is a single-memory addressing mode
(offset + base register).

There is a set of ALU operations with format:
ALUop Rdest, Rsrc 4, Rsrc 5
or

ALUop Rdest, Rsrc {, MEM

where the ALUop is one of the following: Add, Subtract, And, Or, Load (Rgnored),
Store. Rsrc or Rdest are registers. MEM is a base register and offset pair.

Branches use a full compare of two registers and are PC-relative. Assume that this machine
is pipelined so that a new instruction is started every clock cycle. The following pipeline
structure—similar to that used in the VAX 8700 micropipeline (Clark [1987])—is

IF RF ALU1 MEM ALU2 WB
IF RF ALU1 MEM ALU2 WB
IF RF ALU1 MEM ALU2 WB
IF RF ALU1 MEM ALU2 WB
IF RF ALU1L MEM ALU2 WB
IF RF ALU1 MEM ALU2 WB

The first ALU stage is used for effective address calculation for memory references and
branches. The second ALU cycle is used for operations and branch comparison. RF is both
a decode and register-fetch cycle. Assume that when a register read and a register write of
the same register occur in the same clock the write data is forwarded.

a. [12] <3.2> Find the number of adders needed, counting any adder or incrementer;
show a combination of instructions and pipe stages that justify this answer. You need
only give one combination that maximizes the adder count.

Exercises 217

b. [13] <3.2>Find the number of register read and write ports and memory read and write
ports required. Show that your answer is correct by showing a combination of instruc-
tions and pipeline stage indicating the instruction and the number of read ports and
write ports required for that instruction.

c. [20] <3.4> Determine argata forwardingfor any ALUs that will be needed. Assume
that there are separate ALUs for the ALU1 and ALU2 pipe stages. Put in all forwarding
among ALUs needed to avoid or reduce stalls. Show the relationship between the two
instructions involved in forwarding using the format of the table in Figure 3.19 but ig-
noring the last two columns. Be careful to consider forwarding across an intervening
instruction, e.g.,

ADD R1, ...
any instruction
ADD . R1, ..

d. [20] <3.4> Show all data forwarding requirements needed to avoid or reduce stalls
when either the source or destination unit is not an ALU. Use the same format as
Figure 3.19, again ignoring the last two columns. Remember to forward to and from
memory references.

e. [15] <3.4> Show all the remaining hazards that involve at least one unit other than an
ALU as the source or destination unit. Use a table like that in Figure 3.18, but listing
the length of hazard in place of the last column.

f. [15] <3.5> Show all control hazard types by example and state the length of the stall.
Use a format like Figure 3.21, labeling each example.

3.4 [10] <3.2> Consider the example on page 137 that compares the unpipelined and pipe-
lined machine. Assume that 1 ns overhead is fixed and that each pipe stage is balanced an
takes 10 ns in the five-stage pipeline. Plot the speedup of the pipelined machine versus the
unpipelined machine as the number of pipeline stages is increased from five stages to 20
stages, considering only the impact of the pipelining overhead and assuming that the work
can be evenly divided as the stages are increased (which is not generally true). Also plot the
“perfect” speedup that would be obtained if there was no overhead.

3.5 [12] <3.1-3.5> A machine is called “underpipelined” if additional levels of pipelining
can be added without changing the pipeline-stall behavior appreciably. Suppose that the
DLX integer pipeline was changed to four stages by merging EX and MEM and lengthen-
ing the clock cycle by 50%. How much faster would the conventional DLX pipeline be ver-
sus the underpipelined DLX on integer code only? Make sure you include the effect of any
change in pipeline stalls using the data for gcc in Figure 3.38 (page 178).

3.6 [20] <3.4> Add the forwarding entries for stores and for the zero detect unit (for
branches) to the table in Figure 3.Hint: Remember the tricky case:

ADD R1, ...
any instruction
SwW .., R1

How is the forwarding handled for this case?

3.7 [20] <3.4,3.9> Create a table showing the forwarding logic for the R4000 integer pipe-
line using the same format as that in Figure 3.19. Include only the DLX instructions we
considered in Figure 3.19.

218

Chapter 3 Pipelining

3.8 [15] <3.4,3.9> Create a table showing the R4000 integer hazard detection using the
same format as that in Figure 3.18. Include only the instructions in the DLX subset that we
considered in section 3.4.

3.9 [15] <3.5> Suppose the branch frequencies (as percentages of all instructions) are as
follows:

Conditional branches 20%
Jumps and calls 5%
Conditional branches 60% are taken

We are examining a four-deep pipeline where the branch is resolved at the end of the sec-
ond cycle for unconditional branches and at the end of the third cycle for conditional
branches. Assuming that only the first pipe stage can always be done independent of wheth-
er the branch goes and ignoring other pipeline stalls, how much faster would the machine
be without any branch hazards?

3.10 [20/20] <3.4> Suppose that we have the pipeline layout shown in Figure 3.64.

Stage Function
1 Instruction fetch
2 Operand decode
3 Execution or memory access (branch resolution)

FIGURE 3.64 Pipeline stages.

All data dependences are between the register written in stage 3 of instractiba reg-
ister read in stage 2 of instructiof 1, before instructionhas completed. The probability
of such an interlock occurring ispl/

We are considering a change in the machine organization that would write back the result
of an instruction during an effective fourth pipe stage. This would decrease the length of
the clock cycle byl (i.e., if the length of the clock cycle was T, it is now @)—The prob-

ability of a dependence between instruciiamd instruction + 2 isp_z. (Assume that the

value ofp_l excludes instructions that would interlockion2.) The branch would also be
resolved during the fourth stage.

a. [20] <3.4> Assume that we add no additional forwarding hardware for the four-stage
pipeline. Considering only the data hazard, find the lower boundhat makes this
a profitable change. Assume that each result has exactly one use and that the basic
clock cycle has length T.

b. [20] <3.4> Now assume that we have used forwarding to eliminate the extra hazard
introduced by the change. That is, fordgdtahazards the pipeline lengthdaffectively
3. This design may still not be worthwhile because of the impact of control hazards
coming from a four-stage versus a three-stage pipeline. Assume that only stage 1 of
the pipeline can be safely executed before we decide whether a branch goes or not. We
want to know the impact of branch hazards before this longer pipeline does not yield
high performance. Find an upper bound on the percentages of conditional branches in

Exercises 219

programs in terms of the ratio dto the original clock-cycle time, so that the longer
pipeline has better performancedifs a 10% reduction, what is the maximum per-
centage of conditional branches before we lose with this longer pipeline? Assume the
taken-branch frequency for conditional branches is 60%.

3.11 [20] <3.4,3.7> Construct a table like Figure 3.18 that shows the data hazard stalls for
the DLX FP pipeline as shown in Figure 3.44. Consider both integer-FP and FP-FP inter-
actions but ignore divides (FP and integer).

3.12 [20] <3.4,3.7> Construct the forwarding table for the DLX FP pipeline of Figure 3.44
as we did in Figure 3.19. Consider both FP to FP forwarding and forwarding of FP loads to
the FP units but ignore FP and integer divides.

3.13 [25] <3.4,3.7> Suppose DLX had only one register set. Construct the forwarding table
for the FP and integer instructions using the format of Figure 3.19. Assume the DLX pipe-
line in Figure 3.44. Ignore FP and integer divides.

3.14 [15] <3.4,3.7> Construct a table like Figure 3.18 to check for WAW stalls in the DLX
FP pipeline of Figure 3.44. Do not consider integer or FP divides.

3.15 [20] <3.4,3.7> Construct a table like Figure 3.18 that shows the structural stalls for
the R4000 FP pipeline.

3.16 [35] <3.2-3.7> Change the DLX instruction simulator to be pipelined. Measure the
frequency of empty branch-delay slots, the frequency of load delays, and the frequency of
FP stalls for a variety of integer and FP programs. Also, measure the frequency of for-
warding operations. Determine the performance impact of eliminating forwarding and
stalling.

3.17 [35] <3.7> Using a DLX simulator, create a DLX pipeline simulator. Explore the im-
pact of lengthening the FP pipelines, assuming both fully pipelined and unpipelined FP
units. How does clustering of FP operations affect the results? Which FP units are most sus-
ceptible to changes in the FP pipeline length?

3.18 [40] <3.3-3.5> Write an instruction scheduler for DLX that works on DLX assembly
language. Evaluate your scheduler using either profiles of programs or a pipeline simulator.
If the DLX C compiler does optimization, evaluate your scheduler’s performance both with
and without optimization.

	Pipelining
	It is quite a three-pipe problem.

	Sir Arthur Conan Doyle The Adventures of Sherlock Holmes
	3.1 What Is Pipelining? �125
	3.2 The Basic Pipeline for DLX �132
	3.3 The Major Hurdle of Pipelining—Pipeline Hazards �139
	3.4 Data Hazards �146
	3.5 Control Hazards �161
	3.6 What Makes Pipelining Hard to Implement? �178
	3.7 Extending the DLX Pipeline to Handle Multicycle Operations �187
	3.8 Crosscutting Issues: Instruction Set Design and Pipelining �199
	3.9 Putting It All Together: The MIPS R4000 Pipeline �201
	3.10 Fallacies and Pitfalls �209
	3.11 Concluding Remarks �211
	3.12 Historical Perspective and References �212
	Exercises �214
	3.1
	What Is Pipelining?
	Pipelining is an implementation technique whereby multiple in�structions are overlapped in execut...
	A pipeline is like an assembly line. In an automobile assembly line, there are many steps, each c...
	In an automobile assembly line, throughput is defined as the number of cars per hour and is deter...
	The pipeline designer’s goal is to balance the length of each pipeline stage, just as the designe...
	Under these conditions, the speedup from pipelining equals the number of pipe stages, just as an ...
	Pipelining yields a reduction in the average execution time per instruction. Depending on what yo...
	Pipelining is an implementation technique that exploits parallelism among the instructions in a s...
	Before we proceed to basic pipelining, we need to review a simple implementation of an unpipeline...
	A Simple Implementation of DLX

	To understand how DLX can be pipelined, we need to understand how it is implemented without pipel...
	In sections 3.1–3.5 we focus on a pipeline for an integer subset of DLX that consists of load-sto...
	Every DLX instruction can be implemented in at most five clock cycles. The five clock cycles are ...
	1. Instruction fetch cycle (IF):

	IR ¨ Mem[PC] NPC ¨ PC + 4
	2. Instruction decode/register fetch cycle (ID):

	A ¨ Regs[IR6..10]; B ¨ Regs[IR11..15]; Imm ¨ ((IR16)16##IR16..31)
	Decoding is done in parallel with reading registers, which is possible because these fields are a...
	3. Execution/effective address cycle (EX):

	Memory reference:
	ALUOutput ¨ A + Imm;
	Register-Register ALU instruction:
	ALUOutput ¨ A func B;
	Register-Immediate ALU instruction:
	ALUOutput ¨ A op Imm;
	Branch:
	ALUOutput ¨ NPC + Imm; Cond ¨(A op 0)
	The load-store architecture of DLX means that effective address and execu– tion cycles can be com...
	4. Memory access/branch completion cycle (MEM):

	Memory reference:
	LMD ¨ Mem[ALUOutput] or Mem[ALUOutput] ¨ B;
	Branch:
	if (cond) PC ¨ ALUOutput
	5. Write-back cycle (WB):

	Register-Register ALU instruction:
	Regs[IR16..20] ¨ ALUOutput;
	Register-Immediate ALU instruction:
	Regs[IR11..15] ¨ ALUOutput;
	Load instruction:
	Regs[IR11..15] ¨ LMD;
	Figure�3.1 shows how an instruction flows through the datapath. At the end of each clock cycle, e...
	FIGURE 3.1� The implementation of the DLX datapath allows every instruction to be executed in fou...

	In this implementation, branch and store instructions require four cycles and all other instructi...
	Although all machines today are pipelined, this multicycle implementation is a reasonable approxi...
	In addition to these CPI improvements, there are some hardware redundancies that could be elimina...
	Rather than optimize this simple implementation, we will leave the design as it is in Figure 3.1,...
	As an alternative to the multicycle design discussed in this section, we could also have implemen...
	3.2
	The Basic Pipeline for DLX
	We can pipeline the datapath of Figure�3.1 with almost no changes by starting a new instruction o...
	Clock number
	Instruction number
	1
	2
	3
	4
	5
	6
	7
	8
	9
	Instruction i
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 1
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 2
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 3
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 4
	IF
	ID
	EX
	MEM
	WB
	FIGURE 3.2� Simple DLX pipeline. On each clock cycle, another instruction is fetched and be�gins ...

	Your instinct is right if you find it hard to believe that pipelining is as simple as this, becau...
	To begin with, we have to determine what happens on every clock cycle of the machine and make sur...
	FIGURE 3.3� The pipeline can be thought of as a series of datapaths shifted in time. This shows t...

	First, the basic datapath of the last section already used separate instruction and data memories...
	Second, the register file is used in the two stages: for reading in ID and for writing in WB. The...
	Third, Figure�3.3 does not deal with the PC. To start a new instruction every clock, we must incr...
	Because every pipe stage is active on every clock cycle, all operations in a pipe stage must comp...
	FIGURE 3.4� The datapath is pipelined by adding a set of registers, one between each pair of pipe...

	All of the registers needed to hold values temporarily between clock cycles within one instructio...
	Any instruction is active in exactly one stage of the pipeline at a time; therefore, any actions ...
	Stage
	Any instruction
	IF
	IF/ID.IR ¨ Mem[PC];
	IF/ID.NPC,PC ¨ (if ((EX/MEM.opcode == branch) & EX/MEM.cond){EX/MEM. ALUOutput} else {PC+4});
	ID
	ID/EX.A ¨ Regs[IF/ID.IR6..10]; ID/EX.B ¨ Regs[IF/ID.IR11..15];
	ID/EX.NPC ¨ IF/ID.NPC; ID/EX.IR ¨ IF/ID.IR;
	ID/EX.Imm ¨ (IF/ID.IR16)16##IF/ID.IR16..31;
	ALU instruction
	Load or store instruction
	Branch instruction
	EX
	EX/MEM.IR ¨ ID/EX.IR;
	EX/MEM.ALUOutput¨ ID/EX.A func ID/EX.B;
	or
	EX/MEM.ALUOutput ¨ ID/EX.A op ID/EX.Imm;
	EX/MEM.cond ¨ 0;
	EX/MEM.IR¨ ID/EX.IR
	EX/MEM.ALUOutput ¨ ID/EX.A + ID/EX.Imm;
	EX/MEM.cond ¨ 0;
	EX/MEM.B¨ ID/EX.B;
	EX/MEM.ALUOutput ¨ ID/EX.NPC+ID/EX.Imm;
	EX/MEM.cond ¨ (ID/EX.A op 0);
	MEM
	MEM/WB.IR ¨ EX/MEM.IR;
	MEM/WB.ALUOutput ¨ EX/MEM.ALUOutput;
	MEM/WB.IR ¨ EX/MEM.IR;
	MEM/WB.LMD ¨ Mem[EX/MEM.ALUOutput];
	or
	Mem[EX/MEM.ALUOutput] ¨ EX/MEM.B;
	WB
	Regs[MEM/WB.IR16..20] ¨ MEM/WB.ALUOutput;
	or
	Regs[MEM/WB.IR11..15] ¨ MEM/WB.ALUOutput;
	For load only: Regs[MEM/WB.IR11..15] ¨ MEM/WB.LMD;
	FIGURE 3.5� Events on every pipe stage of the DLX pipeline. Let’s review the actions in the stage...

	To control this simple pipeline we need only determine how to set the control for the four multip...
	Basic Performance Issues in Pipelining

	Pipelining increases the CPU instruction throughput—the number of instruc�tions completed per uni...
	The fact that the execution time of each instruction does not decrease puts limits on the prac�ti...
	EXAMPLE Consider the unpipelined machine in the previous section. Assume that it has 10-ns clock ...

	ANSWER The average instruction execution time on the unpipelined machine is
	In the pipelined implementation, the clock must run at the speed of the slowest stage plus overhe...
	The 1-ns overhead essentially establishes a limit on the effectiveness of pipelin�ing. If the ove...
	Alternatively, if our base machine already has a CPI of 1 (with a longer clock cycle), then pipel...
	EXAMPLE Assume that the times required for the five functional units, which operate in each of th...

	ANSWER Since the unpipelined machine executes all instructions in a single clock cycle, its avera...
	The clock cycle time on the pipelined machine must be the largest time for any stage in the pipel...
	Pipelining can be thought of as improving the CPI, which is what we typically do, as increasing t...
	Because the latches in a pipelined design can have a significant impact on the clock speed, desig...
	The pipeline we now have for DLX would function just fine for integer �instructions if every inst...
	3.3
	The Major Hurdle of Pipelining— Pipeline Hazards
	There are situations, called hazards, that prevent the next instruction in the instruction stream...
	1. Structural hazards arise from resource conflicts when the hardware cannot support all possible...
	2. Data hazards arise when an instruction depends on the results of a previous instruction in a w...
	3. Control hazards arise from the pipelining of branches and other instructions that change the PC.

	Hazards in pipelines can make it necessary to stall the pipeline. In Chapter 1, we mentioned that...
	Performance of Pipelines with Stalls

	A stall causes the pipeline performance to degrade from the ideal perfor�mance. Let’s look at a s...
	Remember that pipelining can be thought of as decreasing the CPI or the clock cycle time. Since i...
	If we ignore the cycle time overhead of pipelining and assume the stages are perfectly balanced, ...
	One important simple case is where all instructions take the same number of cycles, which must al...
	If there are no pipeline stalls, this leads to the intuitive result that pipelining can improve p...
	Alternatively, if we think of pipelining as improving the clock cycle time, then we can assume th...
	In cases where the pipe stages are perfectly balanced and there is no overhead, the clock cycle o...
	This leads to the following:
	Thus, if there are no stalls, the speedup is equal to the number of pipeline stages, matching our...
	Structural Hazards

	When a machine is pipelined, the overlapped execution of instructions requires pipelining of func...
	Some pipelined machines have shared a single-memory pipeline for data and instructions. As a resu...
	FIGURE 3.6� A machine with only one memory port will generate a conflict whenever a memory refere...

	Rather than draw the pipeline datapath every time, designers often just indicate stall behavior u...
	FIGURE 3.7� The structural hazard causes pipeline bubbles to be inserted. The effect is that no i...

	Clock cycle number
	Instruction
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	Load instruction
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 1
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 2
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 3
	stall
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 4
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 5
	IF
	ID
	EX
	MEM
	Instruction i + 6
	IF
	ID
	EX
	FIGURE 3.8� A pipeline stalled for a structural hazard—a load with one memory port. As shown here...
	EXAMPLE Let’s see how much the load structural hazard might cost. Suppose that data references co...

	ANSWER There are several ways we could solve this problem. Perhaps the simplest is to compute the...
	Since it has no stalls, the average instruction time for the ideal machine is simply the Clock cy...
	Clearly, the machine without the structural hazard is faster; we can use the ratio of the average...
	As an alternative to this structural hazard, the designer could provide a separate memory access ...
	If all other factors are equal, a machine without structural haz�ards will always have a lower CP...
	EXAMPLE Many recent machines do not have fully pipelined floating-point units. For example, suppo...

	ANSWER From Chapter�2 we find that floating-point multiply has a frequency of 14% in mdljdp2. Our...
	In practice, examining the performance of mdljdp2 on a machine with a five-cycle-deep FP multiply...
	3.4
	Data Hazards
	A major effect of pipelining is to change the relative timing of in�structions by overlapping the...
	ADD R1,R2,R3 SUB R4,R1,R5 AND R6,R1,R7 OR R8,R1,R9 XOR R10,R1,R11
	All the instructions after the ADD use the result of the ADD instruction. As shown in Figure�3.9,...
	FIGURE 3.9� The use of the result of the ADD instruction in the next three instructions causes a ...

	The AND instruction is also affected by this hazard. As we can see from Figure�3.9, the write of ...
	The XOR instruction operates properly, because its register read occurs in clock cycle 6, after t...
	The next subsection discusses a technique to eliminate the stalls for the hazard �involving the S...
	Minimizing Data Hazard Stalls By Forwarding

	The problem posed in Figure 3.9 can be solved with a simple hard�ware technique called forwarding...
	1. The ALU result from the EX/MEM register is al�ways fed back to the ALU �input latches.
	2. If the forwarding hardware detects that the previous ALU operation has written the register co...

	Notice that with forwarding, if the SUB is stalled, the ADD will be completed and the bypass will...
	As the example in Figure�3.9 shows, we need to forward results not only from the immediately prev...
	FIGURE 3.10� A set of instructions that depend on the ADD result use forwarding paths to avoid th...

	Forwarding can be generalized to include passing a result di�rectly to the func�tional unit that ...
	ADD R1,R2,R3 LW R4,0(R1) SW 12(R1),R4
	To prevent a stall in this sequence, we would need to forward the values of R1 and R4 from the pi...
	FIGURE 3.11� Stores require an operand during MEM, and forwarding of that operand is shown here. ...
	Data Hazard Classification

	A hazard is created whenever there is a dependence between in�structions, and they are close enou...
	Data hazards may be classified as one of three types, depending on the order of read and write ac...
	RAW (read after write) — j tries to read a source before i writes it, so j incorrectly gets the o...
	WAW (write after write) — j tries to write an operand before it is written by i. The writes end u...
	LW R1,0(R2)
	IF
	ID
	EX
	MEM1
	MEM2
	WB
	ADD R1,R2,R3
	IF
	ID
	EX
	WB
	Unless this hazard is avoided, execution of this sequence on this revised pipeline will leave the...
	Allowing writes in different pipe stages introduces other problems, since two instructions can tr...
	WAR (write after read) — j tries to write a destination before it is read by i, so i incorrectly ...
	SW 0(R1),R2
	IF
	ID
	EX
	MEM1
	MEM2
	WB
	ADD R2,R3,R4
	IF
	ID
	EX
	WB
	If the SW reads R2 during the second half of its MEM2 stage and the ADD writes R2 during the firs...
	Note that the RAR (read after read) case is not a hazard.
	Data Hazards Requiring Stalls

	Unfortunately, not all potential data hazards can be handled by bypassing. �Consider the followin...
	LW R1,0(R2) SUB R4,R1,R5 AND R6,R1,R7 OR R8,R1,R9
	The pipelined datapath with the bypass paths for this example is shown in Figure�3.12. This case ...
	FIGURE 3.12� The load instruction can bypass its results to the AND and OR instructions, but not ...

	The load instruction has a delay or latency that cannot be elimi�nated by for�warding alone. Inst...
	FIGURE 3.13� The load interlock causes a stall to be inserted at clock cycle 4, delaying the SUB ...

	LW R1,0(R2)
	IF
	ID
	EX
	MEM
	WB
	SUB R4,R1,R5
	IF
	ID
	EX
	MEM
	WB
	AND R6,R1,R7
	IF
	ID
	EX
	MEM
	WB
	OR R8,R1,R9
	IF
	ID
	EX
	MEM
	WB
	LW R1,0(R2)
	IF
	ID
	EX
	MEM
	WB
	SUB R4,R1,R5
	IF
	ID
	stall
	EX
	MEM
	WB
	AND R6,R1,R7
	IF
	stall
	ID
	EX
	MEM
	WB
	OR R8,R1,R9
	stall
	IF
	ID
	EX
	MEM
	WB
	FIGURE 3.14� In the top half, we can see why a stall is needed: the MEM cycle of the load produce...
	EXAMPLE Suppose that 30% of the instructions are loads, and half the time the instruction followi...

	ANSWER The ideal machine will be faster by the ratio of the CPIs. The CPI for an instruc�tion fol...
	In the next subsection we consider compiler techniques to reduce these penalties. After that, we ...
	Compiler Scheduling for Data Hazards

	Many types of stalls are quite frequent. The typical code-genera�tion pattern for a statement suc...
	Rather than just allow the pipeline to stall, the compiler could try to schedule the pipeline to ...
	LW R1,B
	IF
	ID
	EX
	MEM
	WB
	LW R2,C
	IF
	ID
	EX
	MEM
	WB
	ADD R3,R1,R2
	IF
	ID
	stall
	EX
	MEM
	WB
	SW A,R3
	IF
	stall
	ID
	EX
	MEM
	WB
	FIGURE 3.15� The DLX code sequence for A = B + C. The ADD instruction must be stalled to al�low t...
	EXAMPLE Generate DLX code that avoids pipeline stalls for the following sequence:

	a = b + c; d = e – f;
	Assume loads have a latency of one clock cycle.
	ANSWER Here is the scheduled code:
	LW Rb,b LW Rc,c LW Re,e ; swap instructions to avoid stall ADD Ra,Rb,Rc LW Rf,f SW a,Ra ; store/l...
	Both load interlocks (LW Rc, c to ADD Ra, Rb, Rc and LW Rf, f to SUB Rd, Re, Rf) have been elimin...
	Many modern compilers try to use instruction scheduling to improve pipeline performance. In the s...
	FIGURE 3.16� Percentage of the loads that result in a stall with the DLX pipeline. This chart sho...
	Implementing the Control for the DLX Pipeline

	The process of letting an instruction move from the instruction decode stage (ID) into the execut...
	Situation
	Example code sequence
	Action
	No dependence
	LW R1,45(R2) ADD R5,R6,R7 SUB R8,R6,R7 OR R9,R6,R7
	No hazard possible because no dependence exists on R1 in the immediately following three instruct...
	Dependence requiring stall
	LW R1,45(R2) ADD R5,R1,R7 SUB R8,R6,R7 OR R9,R6,R7
	Comparators detect the use of R1 in the ADD and stall the ADD (and SUB and OR) before the ADD beg...
	Dependence overcome by forwarding
	LW R1,45(R2) ADD R5,R6,R7 SUB R8,R1,R7 OR R9,R6,R7
	Comparators detect use of R1 in SUB and for�ward result of load to ALU in time for SUB to begin EX.
	Dependence with accesses in order
	LW R1,45(R2) ADD R5,R6,R7 SUB R8,R6,R7 OR R9,R1,R7
	No action required because the read of R1 by OR occurs in the second half of the ID phase, while ...
	FIGURE 3.17� Situations that the pipeline hazard detection hardware can see by comparing the dest...

	Let’s start with implementing the load interlock. If there is a RAW hazard with the source instru...
	Opcode field of ID/EX (ID/EX.IR0..5)
	Opcode field of IF/ID (IF/ID.IR0..5)
	Matching operand fields
	Load
	Register-register ALU
	ID/EX.IR11..15 == IF/ID.IR6..10
	Load
	Register-register ALU
	ID/EX.IR11..15 == IF/ID.IR11..15
	Load
	Load, store, ALU immediate, or branch
	ID/EX.IR11..15 == IF/ID.IR6..10
	FIGURE 3.18� The logic to detect the need for load interlocks during the ID stage of an instructi...

	Once a hazard has been detected, the control unit must insert the pipeline stall and prevent the ...
	Implementing the forwarding logic is similar, though there are more cases to consider. The key ob...
	Pipeline �register �containing source �instruction
	Opcode of source �instruction
	Pipeline � �register �containing �destination �instruction
	Opcode of �destination �instruction
	Destination of the �forwarded �result
	Comparison (if equal then forward)
	EX/MEM
	Register- �register ALU
	ID/EX
	Register-register ALU, ALU �immediate, load, store, branch
	Top ALU �input
	EX/MEM.IR16..20 == ID/EX.IR6..10
	EX/MEM
	Register- �register ALU
	ID/EX
	Register-register ALU
	Bottom ALU �input
	EX/MEM.IR16..20 == ID/EX.IR11..15
	MEM/WB
	Register- �register ALU
	ID/EX
	Register-register ALU, ALU �immediate, load, store, branch
	Top ALU �input
	MEM/WB.IR16..20 == ID/EX.IR6..10
	MEM/WB
	Register- �register ALU
	ID/EX
	Register-register ALU
	Bottom ALU �input
	MEM/WB.IR16..20 == ID/EX.IR11..15
	EX/MEM
	ALU �immediate
	ID/EX
	Register-register ALU, ALU �immediate, load, store, branch
	Top ALU �input
	EX/MEM.IR11..15 == ID/EX.IR6..10
	EX/MEM
	ALU �immediate
	ID/EX
	Register-register ALU
	Bottom ALU �input
	EX/MEM.IR11..15 == ID/EX.IR11..15
	MEM/WB
	ALU �immediate
	ID/EX
	Register-register ALU, ALU �immediate, load, store, branch
	Top ALU �input
	MEM/WB.IR11..15 == ID/EX.IR6..10
	MEM/WB
	ALU �immediate
	ID/EX
	Register-register ALU
	Bottom ALU �input
	MEM/WB.IR11..15 == ID/EX.IR11..15
	MEM/WB
	Load
	ID/EX
	Register-register ALU, ALU �immediate, load, store, branch
	Top ALU �input
	MEM/WB.IR11..15 == ID/EX.IR6..10
	MEM/WB
	Load
	ID/EX
	Register-register ALU
	Bottom ALU �input
	MEM/WB.IR11..15 == ID/EX.IR11..15
	FIGURE 3.19� Forwarding of data to the two ALU inputs (for the instruction in EX) can occur from ...

	In addition to the comparators and combinational logic that we need to determine when a forwardin...
	FIGURE 3.20� Forwarding of results to the ALU requires the addition of three extra inputs on each...

	For DLX, the hazard detection and forwarding hardware is reasonably sim�ple; we will see that thi...
	3.5
	Control Hazards
	Control hazards can cause a greater perfor�mance loss for our DLX pipeline than do data hazards. ...
	The simplest method of dealing with branches is to stall the pipeline as soon as we detect the br...
	Branch instruction
	IF
	ID
	EX
	MEM
	WB
	Branch successor
	IF
	stall
	stall
	IF
	ID
	EX
	MEM
	WB
	Branch successor + 1
	IF
	ID
	EX
	MEM
	WB
	Branch successor + 2
	IF
	ID
	EX
	MEM
	Branch successor + 3
	IF
	ID
	EX
	Branch successor + 4
	IF
	ID
	Branch successor + 5
	IF
	FIGURE 3.21� A branch causes a three-cycle stall in the DLX pipeline: One cycle is a repeated IF ...

	Three clock cycles wasted for every branch is a significant loss. With a 30% branch frequency and...
	1. Find out whether the branch is taken or not taken earlier in the pipeline.
	2. Compute the taken PC (i.e., the address of the branch target) earlier.

	To optimize the branch behavior, both of these must be done—it doesn’t help to know the target of...
	In DLX, the branches (BEQZ and BNEZ) require testing a register for equality to zero. Thus, it is...
	FIGURE 3.22� The stall from branch hazards can be reduced by moving the zero test and branch targ...

	Pipe stage
	Branch instruction
	IF
	IF/ID.IR ¨ Mem[PC];
	IF/ID.NPC,PC ¨ (if ((IF/ID.opcode == branch) & (Regs[IF/ID.IR6..10] op 0)) {IF/ID.NPC + (IF/ID.IR...
	ID
	ID/EX.A ¨ Regs[IF/ID.IR6..10]; ID/EX.B ¨ Regs[IF/ID.IR11..15];
	ID/EX.IR ¨ IF/ID.IR;
	ID/EX.Imm ¨ (IF/ID.IR16)16##IF/ID.IR16..31
	EX
	MEM
	WB
	FIGURE 3.23� This revised pipeline structure is based on the original in Figure�3.5, page�136. It...

	In some machines, branch hazards are even more expensive in clock cycles than in our example, sin...
	Before talking about methods for reducing the pipeline penalties that can arise from branches, le...
	Branch Behavior in Programs

	Because branches can dramatically affect pipeline performance, we should look at their behavior t...
	FIGURE 3.24� The frequency of instructions (branches, jumps, calls, and returns) that may change ...

	The integer benchmarks show conditional branch frequencies of 14% to 16%, with much lower uncondi...
	Since the performance of pipelining schemes for branches may depend on whether or not branches ar...
	FIGURE 3.25� Together the forward and backward taken branches account for an average of 67% of al...
	Reducing Pipeline Branch Penalties

	There are many methods for dealing with the pipeline stalls caused by branch delay; we discuss fo...
	The simplest scheme to handle branches is to freeze or flush the pipeline, holding or deleting an...
	A higher performance, and only slightly more complex, scheme is to treat every branch as not take...
	In the DLX pipeline, this predict-not-taken or predict-untaken scheme is imple�mented by continui...
	Untaken branch instruction
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 1
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 2
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 3
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 4
	IF
	ID
	EX
	MEM
	WB
	Taken branch instruction
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 1
	IF
	idle
	idle
	idle
	idle
	Branch target
	IF
	ID
	EX
	MEM
	WB
	Branch target + 1
	IF
	ID
	EX
	MEM
	WB
	Branch target + 2
	IF
	ID
	EX
	MEM
	WB
	FIGURE 3.26� The predict-not-taken scheme and the pipeline sequence when the branch is untaken (t...

	An alternative scheme is to treat every branch as taken. As soon as the branch is decoded and the...
	A fourth scheme in use in some machines is called delayed branch. This technique is also used in ...
	branch instruction sequential successor1 sequential successor2 sequential successorn bra...
	The sequential successors are in the branch-delay slots. These instructions are executed whether ...
	Untaken branch instruction
	IF
	ID
	EX
	MEM
	WB
	Branch-delay instruction (i + 1)
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 2
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 3
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 4
	IF
	ID
	EX
	MEM
	WB
	Taken branch instruction
	IF
	ID
	EX
	MEM
	WB
	Branch-delay instruction (i + 1)
	IF
	ID
	EX
	MEM
	WB
	Branch target
	IF
	ID
	EX
	MEM
	WB
	Branch target + 1
	IF
	ID
	EX
	MEM
	WB
	Branch target + 2
	IF
	ID
	EX
	MEM
	WB
	FIGURE 3.27� The behavior of a delayed branch is the same whether or not the branch is taken. The...

	The job of the compiler is to make the successor instructions valid and useful. A number of optim...
	FIGURE 3.28� Scheduling the branch-delay slot. The top box in each pair shows the code before sch...

	Scheduling strategy
	Requirements
	Improves performance when?
	(a) From before
	Branch must not depend on the rescheduled instructions.
	Always.
	(b) From target
	Must be OK to execute rescheduled instruc�tions if branch is not taken. May need to duplicate ins...
	When branch is taken. May �enlarge program if instructions are duplicated.
	(c) From fall through
	Must be OK to execute instructions if branch is �taken.
	When branch is not taken.
	FIGURE 3.29� Delayed-branch scheduling schemes and their requirements. The origin of the instruct...

	The limitations on delayed-branch scheduling arise from (1) the restric�tions on the instructions...
	Untaken branch instruction
	IF
	ID
	EX
	MEM
	WB
	Branch-delay instruction (i + 1)
	IF
	idle
	idle
	idle
	idle
	Instruction i + 2
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 3
	IF
	ID
	EX
	MEM
	WB
	Instruction i + 4
	IF
	ID
	EX
	MEM
	WB
	Taken branch instruction
	IF
	ID
	EX
	MEM
	WB
	Branch-delay instruction (i + 1)
	IF
	ID
	EX
	MEM
	WB
	Branch target
	IF
	ID
	EX
	MEM
	WB
	Branch target + 1
	IF
	ID
	EX
	MEM
	WB
	Branch target + 2
	IF
	ID
	EX
	MEM
	WB
	FIGURE 3.30� The behavior of a predicted-taken cancelling branch depends on whether the branch is...

	The advantage of cancelling branches is that they eliminate the requirements on the instruction p...
	Figure 3.31 shows the effective�ness of the branch scheduling in DLX with a sin�gle branch-delay ...
	Benchmark
	% conditional branches
	% conditional branches with empty slots
	% conditional branches that are �cancelling
	% cancelling branches that are �cancelled
	% branches with �cancelled �delay slots
	Total % branches with empty or �cancelled delay slot
	compress
	14%
	18%
	31%
	43%
	13%
	31%
	eqntott
	24%
	24%
	50%
	24%
	12%
	36%
	espresso
	15%
	29%
	19%
	21%
	4%
	33%
	gcc
	15%
	16%
	33%
	34%
	11%
	27%
	li
	15%
	20%
	55%
	48%
	26%
	46%
	Integer average
	17%
	21%
	38%
	34%
	13%
	35%
	doduc
	8%
	33%
	12%
	62%
	7%
	40%
	ear
	10%
	37%
	36%
	14%
	5%
	42%
	hydro2d
	12%
	0%
	69%
	24%
	17%
	17%
	mdljdp2
	9%
	0%
	86%
	10%
	9%
	9%
	su2cor
	3%
	7%
	17%
	57%
	10%
	17%
	FP average
	8%
	16%
	44%
	33%
	10%
	25%
	Overall average
	12%
	18%
	41%
	34%
	12%
	30%
	FIGURE 3.31� Delayed and cancelling delay branches for DLX allow branch hazards to be hidden 70% ...
	FIGURE 3.32� The performance of delayed and cancelling branches is summarized by showing the frac...

	Delayed branches are an architecturally visible feature of the pipeline. This is the source both ...
	There is a small additional hardware cost for delayed branches. For a single- cycle delayed branc...
	Performance of Branch Schemes

	What is the effective performance of each of these schemes? The effective pipeline speedup with b...
	Because of the following:
	Pipeline stall cycles from branches = Branch frequency ¥ Branch penalty

	we obtain
	The branch frequency and branch penalty can have a component from both unconditional and conditio...
	Using the DLX measurements in this section, Figure�3.33 shows several hardware options for dealin...
	Scheduling scheme
	Branch penalty per conditional branch
	Penalty per �unconditional branch
	Average branch penalty per branch
	Effective CPI with branch stalls
	Integer
	FP
	Integer
	FP
	Integer
	FP
	Stall pipeline
	1.00
	1.00
	1.00
	1.00
	1.00
	1.17
	1.15
	Predict taken
	1.00
	1.00
	1.00
	1.00
	1.00
	1.17
	1.15
	Predict not taken
	0.62
	0.70
	1.0
	0.69
	0.74
	1.12
	1.11
	Delayed branch
	0.35
	0.25
	0.0
	0.30
	0.21
	1.06
	1.03
	FIGURE 3.33� Overall costs of a variety of branch schemes with the DLX pipeline. These data are f...

	Remember that the numbers in this section are dramatically affected by the length of the pipeline...
	EXAMPLE For an R4000-style pipeline, it takes three pipeline stages before the branch target addr...

	Branch scheme
	Penalty unconditional
	Penalty untaken
	Penalty taken
	Flush pipeline
	2
	3
	3
	Predict taken
	2
	3
	2
	Predict untaken
	2
	0
	3
	FIGURE 3.34� Branch penalties for the three simplest prediction schemes for a deeper pipeline.

	Find the effective addition to the CPI arising from branches for this pipeline, using the data fr...
	ANSWER We find the CPIs by multiplying the relative frequency of unconditional, conditional untak...
	Addition to the CPI
	Branch scheme
	Unconditional branches
	Untaken conditional branches
	Taken conditional branches
	All branches
	Frequency of event
	4%
	6%
	10%
	20%
	Stall pipeline
	0.08
	0.18
	0.30
	0.56
	Predict taken
	0.08
	0.18
	0.20
	0.46
	Predict untaken
	0.08
	0.00
	0.30
	0.38
	FIGURE 3.35� CPI penalties for three branch-prediction schemes and a deeper pipeline.

	The differences among the schemes are substantially increased with this longer delay. If the base...
	As we will see in section 3.9, the R4000 uses a mixed strategy with a one-cycle, cancelling delay...
	Static Branch Prediction: Using Compiler Technology

	Delayed branches are a technique that exposes a pipeline hazard so that the compiler can reduce t...
	LW R1,0(R2) SUB R1,R1,R3 BEQZ R1,L OR R4,R5,R6 ADD R10,R4,R3 L: ADD R7,R8,R9
	The dependence of the SUB and BEQZ on the LW instruction means that a stall will be needed after ...
	To perform these optimizations, we need to predict the branch statically when we compile the prog...
	There are two basic methods we can use to statically predict branches: by examination of the prog...
	Another alternative is to predict on the basis of branch direction, choosing backward-going branc...
	A more accurate technique is to predict branches on the basis of profile information collected fr...
	FIGURE 3.36� Misprediction rate for a profile-based predictor varies widely but is generally bett...

	While we can derive the prediction accuracy of a predict-taken strategy and measure the accuracy ...
	FIGURE 3.37� Accuracy of a predict-taken strategy and a profile-based predictor as measured by th...
	Summary: Performance of the DLX Integer Pipeline

	We close this section on hazard detection and elimination by showing the total distribution of id...
	FIGURE 3.38� Percentage of the instructions that cause a stall cycle. This assumes a perfect memo...

	Overall the integer programs exhibit an average of 0.06 branch stalls per instruction and 0.05 lo...
	3.6
	What Makes Pipelining Hard to Implement?
	Now that we understand how to detect and resolve hazards, we can deal with some complications tha...
	Dealing with Exceptions

	Exceptional situations are harder to handle in a pipelined machine because the overlapping of ins...
	Types of Exceptions and Requirements

	The terminology used to describe exceptional situations where the normal execution order of instr...
	I/O device request
	Invoking an operating system service from a user program
	Tracing instruction execution
	Breakpoint (programmer-requested interrupt)
	Integer arithmetic overflow
	FP arithmetic anomaly (see Appendix A)
	Page fault (not in main memory)
	Misaligned memory accesses (if alignment is required)
	Memory-protection violation
	Using an undefined or unimplemented instruction
	Hardware malfunctions
	Power failure
	When we wish to refer to some particular class of such exceptions, we will use a longer name, suc...
	Exception event
	IBM 360
	VAX
	Motorola 680x0
	Intel 80x86
	I/O device request
	Input/output
	interrup�tion
	Device interrupt
	Exception (Level 0...7 autovector)
	Vectored inter�rupt
	Invoking the operat�ing system service from a user
	pro�gram
	Supervisor call
	inter�ruption
	Exception (change mode supervisor trap)
	Exception �(unimplemented �instruction)— on Macintosh
	Interrupt
	(INT instruction)
	Tracing instruction execution
	Not applicable
	Exception (trace fault)
	Exception (trace)
	Interrupt (single- step trap)
	Breakpoint
	Not applicable
	Exception (breakpoint fault)
	Exception (illegal �instruction or breakpoint)
	Interrupt (breakpoint trap)
	Integer arithmetic over�flow or underflow; FP trap
	Program interruption (overflow or �underflow �exception)
	Exception (integer overflow trap or floating underflow fault)
	Exception
	(floating-point �coprocessor errors)
	Interrupt (overflow trap or math unit �exception)
	Page fault (not in main memory)
	Not applicable (only in 370)
	Exception (translation not valid fault)
	Exception (memory- management unit �errors)
	Interrupt
	(page fault)
	Misaligned memory accesses
	Program interruption (specification exception)
	Not applicable
	Exception
	(address error)
	Not applicable
	Memory protection violations
	Program interruption (protection �exception)
	Exception (access control violation fault)
	Exception
	(bus error)
	Interrupt (protection
	ex�ception)
	Using undefined
	in�structions
	Program interruption (operation �exception)
	Exception (opcode privileged/ reserved fault)
	Exception (illegal �instruction or break- point/unimplemented instruc�tion)
	Interrupt (invalid
	op�code)
	Hardware
	malfunc�tions
	Machine-check �interruption
	Exception �(machine-check abort)
	Exception
	(bus error)
	Not applicable
	Power failure
	Machine-check i�nterruption
	Urgent interrupt
	Not applicable
	Nonmaskable �interrupt
	FIGURE 3.39� The names of common exceptions vary across four different architectures. Every event...

	Although we use the name exception to cover all of these events, individual events have important...
	1. Synchronous versus asynchronous—If the event oc�curs at the same place every time the program ...
	2. User requested versus coerced—If the user task directly asks for it, it is a user- request eve...
	3. User maskable versus user nonmaskable—If an event can be masked or disabled by a user task, it...
	4. Within versus between instructions—This classification depends on whether the event prevents i...
	5. Resume versus terminate—If the program’s execution always stops after the inter�rupt, it is a ...

	Figure 3.40 classifies the examples from Figure 3.39 according to these five categories. The diff...
	Exception type
	Synchronous vs. asyn�chronous
	User �request vs. coerced
	User maskable vs. nonmaskable
	Within vs. between in�structions
	Resume vs. �terminate
	I/O device request
	Asynchronous
	Coerced
	Nonmask�able
	Between
	Resume
	Invoke operating system
	Synchronous
	User �request
	Nonmask�able
	Between
	Resume
	Tracing instruction execution
	Synchronous
	User �request
	User maskable
	Between
	Resume
	Breakpoint
	Synchronous
	User �request
	User maskable
	Between
	Resume
	Integer arithmetic overflow
	Synchronous
	Coerced
	User maskable
	Within
	Resume
	Floating-point arithmetic overflow or underflow
	Synchronous
	Coerced
	User maskable
	Within
	Resume
	Page fault
	Synchronous
	Coerced
	Nonmask�able
	Within
	Resume
	Misaligned memory accesses
	Synchronous
	Coerced
	User maskable
	Within
	Resume
	Memory-protection �violations
	Synchronous
	Coerced
	Nonmask�able
	Within
	Resume
	Using undefined in�structions
	Synchronous
	Coerced
	Nonmask�able
	Within
	Terminate
	Hardware malfunc�tions
	Asynchronous
	Coerced
	Nonmask�able
	Within
	Terminate
	Power failure
	Asynchronous
	Coerced
	Nonmaskable
	Within
	Terminate
	FIGURE 3.40� Five categories are used to define what actions are needed for the different excepti...
	Stopping and Restarting Execution

	As in unpipelined implementations, the most difficult exceptions have two prop�erties: (1) they o...
	1. Force a trap instruction into the pipeline on the next IF.
	2. Until the trap is taken, turn off all writes for the faulting instruction and for all instruct...
	3. After the exception-handling routine in the operating system re�ceives control, it immediately...

	When we use delayed branches, as mentioned in the last section, it is no longer possible to re-cr...
	After the exception has been handled, special instructions return the machine from the exception ...
	Supporting precise exceptions is a requirement in many systems, while in others it is “just” valu...
	Exceptions in DLX

	Figure�3.41 shows the DLX pipeline stages and which “problem” exceptions might occur in each stag...
	LW
	IF
	ID
	EX
	MEM
	WB
	ADD
	IF
	ID
	EX
	MEM
	WB
	This pair of instructions can cause a data page fault and an arith�metic exception at the same ti...
	In reality, the situation is not as straightforward as this simple example. Exceptions may occur ...
	Pipeline stage
	Problem exceptions occurring
	IF
	Page fault on instruction fetch; misaligned memory access; memory-protection violation
	ID
	Undefined or illegal opcode
	EX
	Arithmetic exception
	MEM
	Page fault on data fetch; misaligned memory access; �memory-protection violation
	WB
	None
	FIGURE 3.41� Exceptions that may occur in the DLX pipeline. Exceptions raised from in�struction o...

	Since we are implementing precise exceptions, the pipeline is required to handle the exception ca...
	When an instruction enters WB (or is about to leave MEM), the exception status vector is checked....
	In the next subsection we describe problems that arise in implementing exceptions in the pipeline...
	Instruction Set Complications

	No DLX instruction has more than one result, and our DLX pipeline writes that result only at the ...
	A related source of difficulties arises from instructions that update memory state during executi...
	A different set of difficulties arises from odd bits of state that may create additional pipeline...
	Additionally, in machines with condition codes, the processor must decide when the branch con�dit...
	Of course, archi�tectures with explicitly set condition codes allow the delay between condition t...
	A final thorny area in pipelining is multicycle operations. Imagine trying to pipeline a sequence...
	MOVL R1,R2 ADDL3 42(R1),56(R1)+,@(R1) SUBL2 R2,R3 MOVC3 @(R1)[R2],74(R2),R3
	These instructions differ radically in the number of clock cycles they will require, from as low ...
	In comparison, load-store machines have simple operations with similar amounts of work and pipeli...
	3.7
	Extending the DLX Pipeline to Handle Multicycle Operations
	We now want to explore how our DLX pipeline can be ex�tended to handle floating- point operations...
	It is impractical to require that all DLX floating-point operations complete in one clock cycle, ...
	For this section, let’s assume that there are four separate functional units in our DLX implement...
	1. The main integer unit that handles loads and stores, integer ALU operations, and branches.
	2. FP and integer multiplier.
	3. FP adder that handles FP add, subtract, and conversion.
	4. FP and integer divider.

	If we also assume that the execution stages of these functional units are not pipelined, then Fig...
	FIGURE 3.42� The DLX pipeline with three additional unpipelined, floating-point, functional units...

	In reality, the intermediate results are probably not cycled around the EX unit as Figure�3.42 su...
	Functional unit
	Latency
	Initiation interval
	Integer ALU
	0
	1
	Data memory (integer and FP loads)
	1
	1
	FP add
	3
	1
	FP multiply (also integer multiply)
	6
	1
	FP divide (also integer divide)
	24
	25
	FIGURE 3.43� Latencies and initiation intervals for functional units.

	With this definition of latency, integer ALU operations have a latency of 0, since the results ca...
	The example pipeline structure in Figure 3.43 allows up to four outstanding FP adds, seven outsta...
	FIGURE 3.44� A pipeline that supports multiple outstanding FP operations. The FP multiplier and a...

	MULTD
	IF
	ID
	M1
	M2
	M3
	M4
	M5
	M6
	M7
	MEM
	WB
	ADDD
	IF
	ID
	A1
	A2
	A3
	A4
	MEM
	WB
	LD
	IF
	ID
	EX
	MEM
	WB
	SD
	IF
	ID
	EX
	MEM
	WB
	FIGURE 3.45� The pipeline timing of a set of independent FP operations. The stages in italics sho...

	The structure of the pipeline in Figure�3.44 requires the introduction of the additional pipeline...
	Hazards and Forwarding in Longer Latency Pipelines

	There are a number of different aspects to the hazard detection and forwarding for a pipeline lik...
	1. Because the divide unit is not fully pipelined, structural hazards can occur. These will need ...
	2. Because the instructions have varying running times, the number of register writes required in...
	3. WAW hazards are possible, since instructions no longer reach WB in order. Note that WAR hazard...
	4. Instructions can complete in a different order than they were issued, causing problems with ex...
	5. Because of longer latency of operations, stalls for RAW hazards will be more frequent.

	The increase in stalls arising from longer operation latencies is fundamentally the same as that ...
	Clock cycle number
	Instruction
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	LD F4,0 (R2)
	IF
	ID
	EX
	MEM
	WB
	MULTD F0, F4,F6
	IF
	ID
	stall
	M1
	M2
	M3
	M4
	M5
	M6
	M7
	MEM
	WB
	ADDD F2, F0,F8
	IF
	stall
	ID
	stall
	stall
	stall
	stall
	stall
	stall
	A1
	A2
	A3
	A4
	MEM
	SD 0(R2), F2
	IF
	stall
	stall
	stall
	stall
	stall
	stall
	ID
	EX
	stall
	stall
	stall
	MEM
	FIGURE 3.46� A typical FP code sequence showing the stalls arising from RAW hazards. The longer p...

	Now look at the problems arising from writes, described as (2) and (3) in the list above. If we a...
	Clock cycle number
	Instruction
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	MULTD F0,F4,F6
	IF
	ID
	M1
	M2
	M3
	M4
	M5
	M6
	M7
	MEM
	WB
	...
	IF
	ID
	EX
	MEM
	WB
	...
	IF
	ID
	EX
	MEM
	WB
	ADDD F2,F4,F6
	IF
	ID
	A1
	A2
	A3
	A4
	MEM
	WB
	...
	IF
	ID
	EX
	MEM
	WB
	...
	IF
	ID
	EX
	MEM
	WB
	LD F2,0(R2)
	IF
	ID
	EX
	MEM
	WB
	FIGURE 3.47� Three instructions want to perform a write back to the FP register file simultaneous...

	There are two different ways to implement this interlock. The first is to track the use of the wr...
	An alternative scheme is to stall a conflicting instruction when it tries to enter either the MEM...
	Our other problem is the possibility of WAW hazards. To see that these exist, consider the exampl...
	There are two possible ways to handle this WAW hazard. The first approach is to delay the issue o...
	In detecting the possible hazards, we must consider hazards among FP instructions, as well as haz...
	1. Check for structural hazards—Wait until the required functional unit is not busy (this is only...
	2. Check for a RAW data hazard—Wait until the source registers are not listed as pending destinat...
	3. Check for a WAW data hazard—Determine if any instruction in A1,..., A4, D, M1,..., M7 has the ...

	Although the hazard detection is more complex with the multicycle FP operations, the concepts are...
	Multicycle FP operations also introduce problems for our exception mechanisms, which we deal with...
	Maintaining Precise Exceptions

	Another problem caused by these long-running instruc�tions can be illustrated with the following ...
	DIVF F0,F2,F4 ADDF F10,F10,F8 SUBF F12,F12,F14
	This code sequence looks straight�forward; there are no dependences. A problem arises, however, b...
	This problem arises because instruc�tions are completing in a dif�ferent order than they were iss...
	A second approach is to buffer the results of an operation until all the opera�tions that were is...
	There are two viable variations on this basic approach. The first is a his�tory file, used in the...
	A third technique in use is to allow the exceptions to become somewhat imprecise, but to keep eno...
	Instruction1—A long-running instruction that eventually inter�rupts execution.
	Instruction2, ..., Instructionn–1—A series of instructions that are not completed.
	Instructionn—An instruction that is finished.
	Given the PCs of all the instructions in the pipeline and the exception return PC, the software c...
	The final technique is a hybrid scheme that allows the instruction issue to continue only if it i...
	Performance of a DLX FP Pipeline

	The DLX FP pipeline of Figure�3.44 on page�190 can generate both structural stalls for the divide...
	FIGURE 3.48� Stalls per FP operation for each major type of FP operation. Except for the divide s...

	Figure�3.49 gives the complete breakdown of integer and floating-point stalls for the five FP SPE...
	FIGURE 3.49� The stalls occurring for the DLX FP pipeline for the five FP SPEC benchmarks. The to...

	3.8
	Crosscutting Issues: Instruction Set Design and Pipelining
	For many years the interaction between instruction sets and implementations was believed to be sm...
	Variable instruction lengths and running times can lead to imbalance among pipeline stages, causi...
	Sophisticated addressing modes can lead to different sorts of problems. Ad�dressing modes that up...
	Architectures that allow writes into the instruction space (self-modifying code), such as the 80x...
	Implicitly set condition codes increase the difficulty of finding when a branch has been decided ...
	As a simple example, suppose the DLX instruction format were more com�plex, so that a separate, d...
	3.9
	Putting It All Together: The MIPS R4000 Pipeline
	In this section we look at the pipeline structure and performance of the MIPS R4000 processor fam...
	Figure 3.50 shows the eight-stage pipeline structure using an abstracted version of the datapath....
	FIGURE 3.50� The eight-stage pipeline structure of the R4000 uses pipelined instruction and data ...

	The function of each stage is as follows:
	IF—First half of instruction fetch; PC selection actually happens here, together with initiation ...
	IS—Second half of instruction fetch, complete instruction cache access.
	RF—Instruction decode and register fetch, hazard checking, and also instruction cache hit detection.
	EX—Execution, which includes effective address calculation, ALU operation, and branch target comp...
	DF—Data fetch, first half of data cache access.
	DS—Second half of data fetch, completion of data cache access.
	TC—Tag check, determine whether the data cache access hit.
	WB—Write back for loads and register-register operations.
	In addition to substantially increasing the amount of forwarding required, this longer latency pi...
	FIGURE 3.51� The structure of the R4000 integer pipeline leads to a two-cycle load delay. A two-c...

	Clock number
	Instruction number
	1
	2
	3
	4
	5
	6
	7
	8
	9
	LW R1, . . .
	IF
	IS
	RF
	EX
	DF
	DS
	TC
	WB
	ADD R2,R1, . . .
	IF
	IS
	RF
	stall
	stall
	EX
	DF
	DS
	SUB R3,R1, . . .
	IF
	IS
	stall
	stall
	RF
	EX
	DF
	OR R4,R1, . . .
	IF
	stall
	stall
	IS
	RF
	EX
	FIGURE 3.52� A load instruction followed by an immediate use results in a two-cycle stall. Normal...

	Figure 3.53 shows that the basic branch delay is three cycles, since the branch condition is comp...
	FIGURE 3.53� The basic branch delay is three cycles, since the condition evaluation is performed ...

	Clock number
	Instruction number
	1
	2
	3
	4
	5
	6
	7
	8
	9
	Branch instruction
	IF
	IS
	RF
	EX
	DF
	DS
	TC
	WB
	Delay slot
	IF
	IS
	RF
	EX
	DF
	DS
	TC
	WB
	Stall
	stall
	stall
	stall
	stall
	stall
	stall
	stall
	Stall
	stall
	stall
	stall
	stall
	stall
	stall
	Branch target
	IF
	IS
	RF
	EX
	DF
	Clock number
	Instruction number
	1
	2
	3
	4
	5
	6
	7
	8
	9
	Branch instruction
	IF
	IS
	RF
	EX
	DF
	DS
	TC
	WB
	Delay slot
	IF
	IS
	RF
	EX
	DF
	DS
	TC
	WB
	Branch instruction + 2
	IF
	IS
	RF
	EX
	DF
	DS
	TC
	Branch instruction + 3
	IF
	IS
	RF
	EX
	DF
	DS
	FIGURE 3.54� A taken branch, shown in the top portion of the figure, has a one-cycle delay slot f...

	In addition to the increase in stalls for loads and branches, the deeper pipeline increases the n...
	The Floating-Point Pipeline

	The R4000 floating-point unit consists of three functional units: a floating-point divider, a flo...
	Stage
	Functional unit
	Description
	FP adder
	Mantissa ADD stage
	FP divider
	Divide pipeline stage
	FP multiplier
	Exception test stage
	FP multiplier
	First stage of multiplier
	FP multiplier
	Second stage of multiplier
	FP adder
	Rounding stage
	FP adder
	Operand shift stage
	Unpack FP numbers
	FIGURE 3.55� The eight stages used in the R4000 floating-point pipelines.

	There is a single copy of each of these stages, and various instructions may use a stage zero or ...
	FP instruction
	Latency
	Initiation interval
	Pipe stages
	Add, subtract
	 4
	 3
	U,S+A,A+R,R+S
	Multiply
	 8
	 4
	U,E+M,M,M,M,N,N+A,R
	Divide
	 36
	 35
	U,A,R,D27,D+A,D+R,D+A,D+R,A,R
	Square root
	112
	111
	U,E,(A+R)108,A,R
	Negate
	 2
	 1
	U,S
	Absolute value
	 2
	 1
	U,S
	FP compare
	 3
	 2
	U,A,R
	FIGURE 3.56� The latencies and initiation intervals for the FP operations both depend on the FP u...

	From the information in Figure�3.56, we can determine whether a sequence of different, independen...
	Clock cycle
	Operation
	Issue/stall
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	Multiply
	Issue
	U
	M
	M
	M
	M
	N
	N+A
	R
	Add
	Issue
	U
	S+A
	A+R
	R+S
	Issue
	U
	S+A
	A+R
	R+S
	Issue
	U
	S+A
	A+R
	R+S
	Stall
	U
	S+A
	A+R
	R+S
	Stall
	U
	S+A
	A+R
	R+S
	Issue
	U
	S+A
	A+R
	R+S
	Issue
	U
	S+A
	A+R
	R+S
	FIGURE 3.57� An FP multiply issued at clock 0 is followed by a single FP add issued between clock...

	Clock cycle
	Operation
	Issue/stall
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	Add
	Issue
	U
	S+A
	A+R
	R+S
	Multiply
	Issue
	U
	M
	M
	M
	M
	N
	N+A
	R
	Issue
	U
	M
	M
	M
	M
	N
	N+A
	R
	FIGURE 3.58� A multiply issuing after an add can always proceed without stalling, since the short...

	Clock cycle
	Operation
	Issue/stall
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	Divide
	issued in cycle 0...
	D
	D
	D
	D
	D
	D+A
	D+R
	D+A
	D+R
	A
	R
	Add
	Issue
	U
	S+A
	A+R
	R+S
	Issue
	U
	S+A
	A+R
	R+S
	Stall
	U
	S+A
	A+R
	R+S
	Stall
	U
	S+A
	A+R
	R+S
	Stall
	U
	S+A
	A+R
	R+S
	Stall
	U
	S+A
	A+R
	R+S
	Stall
	U
	S+A
	A+R
	R+S
	Stall
	U
	S+A
	A+R
	R+S
	Issue
	U
	S+A
	A+R
	Issue
	U
	S+A
	Issue
	U
	FIGURE 3.59� An FP divide can cause a stall for an add that starts near the end of the divide. Th...

	Clock cycle
	Operation
	Issue/stall
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	Add
	Issue
	U
	S+A
	A+R
	R+S
	Divide
	Stall
	U
	A
	R
	D
	D
	D
	D
	D
	D
	D
	D
	D
	Issue
	U
	A
	R
	D
	D
	D
	D
	D
	D
	D
	D
	Issue
	U
	A
	R
	D
	D
	D
	D
	D
	D
	D
	FIGURE 3.60� A double-precision add is followed by a double-precision divide. If the divide start...
	Performance of the R4000 Pipeline

	In this section we examine the stalls that occur for the SPEC92 benchmarks when running on the R4...
	1. Load stalls—Delays arising from the use of a load result one or two cycles �after the load.
	2. Branch stalls—Two-cycle stall on every taken branch plus unfilled or cancelled branch delay sl...
	3. FP result stalls—Stalls because of RAW hazards for an FP operand.
	4. FP structural stalls—Delays because of issue restrictions arising from conflicts for functiona...

	Figure�3.61 shows the pipeline CPI breakdown for the R4000 pipeline for the 10 SPEC92 benchmarks....
	FIGURE 3.61� The pipeline CPI for 10 of the SPEC92 benchmarks, assuming a perfect cache. The pipe...

	Benchmark
	Pipeline CPI
	Load stalls
	Branch stalls
	FP result stalls
	FP structural stalls
	compress
	1.20
	0.14
	0.06
	0.00
	0.00
	eqntott
	1.88
	0.27
	0.61
	0.00
	0.00
	espresso
	1.42
	0.07
	0.35
	0.00
	0.00
	gcc
	1.56
	0.13
	0.43
	0.00
	0.00
	li
	1.64
	0.18
	0.46
	0.00
	0.00
	Integer average
	1.54
	0.16
	0.38
	0.00
	0.00
	doduc
	2.84
	0.01
	0.22
	1.39
	0.22
	mdljdp2
	2.66
	0.01
	0.31
	1.20
	0.15
	ear
	2.17
	0.00
	0.46
	0.59
	0.12
	hydro2d
	2.53
	0.00
	0.62
	0.75
	0.17
	su2cor
	2.18
	0.02
	0.07
	0.84
	0.26
	FP average
	2.48
	0.01
	0.33
	0.95
	0.18
	Overall average
	2.00
	0.10
	0.36
	0.46
	0.09
	FIGURE 3.62� The total pipeline CPI and the contributions of the four major sources of stalls are...

	From the data in Figures�3.61 and 3.62, we can see the penalty of the deeper pipelining. The R400...
	3.10
	Fallacies and Pitfalls
	At first glance, WAW hazards look like they should never occur because no compiler would ever gen...
	BNEZ R1,foo DIVD F0,F2,F4 ; moved into delay slot ; from fall through foo: LD F0,qrs
	If the branch is taken, then before the DIVD can complete, the LD will reach WB, causing a WAW ha...
	The best example of this phenomenon comes from two imple�mentations of the VAX, the 8600 and the ...
	Two factors combine to limit the performance improvement gained by pipe�lining. Limited paralleli...
	FIGURE 3.63� The depth of pipelining versus the speedup obtained. The x-axis shows the number of ...

	Unoptimized code—containing redundant loads, stores, and other operations that might be eliminate...
	3.11
	Concluding Remarks
	Pipelining has been and is likely to continue to be one of the most important techniques for enha...
	In the late 1970s and early 1980s several researchers realized that instruction set complexity an...
	In this chapter, we introduced the basic ideas in pipelining and looked at some simple compiler s...
	3.12
	Historical Perspective and References
	This section describes some of the major advances in pipelining and ends with some of the recent ...
	The first general-purpose pipelined machine is considered to be Stretch, the IBM 7030. Stretch fo...
	A series of general pipelining descriptions that appeared in the late 1970s and early 1980s provi...
	The RISC machines were originally designed with ease of implementation and pipelining in mind. Se...
	The RISC machines refined the notion of compiler-scheduled pipelines in the early 1980s, though e...
	J. E. Smith and his colleagues have written a number of papers examining instruction issue, excep...
	The MIPS R4000, in addition to being one of the first deeply pipelined microprocessors, was the f...
	References

	Bhandarkar, D. and D. W. Clark [1991]. “Performance from architecture: Comparing a RISC and a CIS...
	Bloch, E. [1959]. “The engineering design of the Stretch computer,” Proc. Fall Joint Computer Con...
	Bucholtz, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New York.
	Chen, T. C. [1980]. “Overlap and parallel processing,” in Introduction to Computer Architecture, ...
	Clark, D. W. [1987]. “Pipelining and performance in the VAX 8800 processor,” Proc. Second Conf. o...
	Davidson, E. S. [1971]. “The design and control of pipelined function generators,” Proc. Conf. on...
	Davidson, E. S., A. T. Thomas, L. E. Shar, and J. H. Patel [1975]. “Effective control for pipelin...
	Earle, J. G. [1965]. “Latched carry-save adder,” IBM Technical Disclosure Bull. 7 (March), 909–910.
	Emer, J. S. and D. W. Clark [1984]. “A characterization of processor performance in the VAX-11/ 7...
	Fisher, J. and Freudenberger, S. [1992]. “Predicting conditional branch directions from previous ...
	Gibbons, P. B. and S. S. Muchnik [1986]. “Efficient instruction scheduling for a pipelined proces...
	Gross, T. R. [1983]. Code Optimization of Pipeline Constraints, Ph.D. Thesis (December), Computer...
	Heinrich, J. [1993]. MIPS R4000 User’s Manual, Prentice Hall, Englewood Cliffs, N.J.
	Hennessy, J. L. and T. R. Gross [1983]. “Postpass code optimization of pipeline constraints,” ACM...
	IBM [1990]. “The IBM RISC System/6000 processor” (collection of papers), IBM J. of Research and D...
	Keller R. M. [1975]. “Look-ahead processors,” ACM Computing Surveys 7:4 (December), 177– 195.
	Killian, E. [1991]. “MIPS R4000 technical overview–64 bits/100 MHz or bust,” Hot Chips III Sympos...
	Kogge, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.
	Kunkel, S. R. and J. E. Smith [1986]. “Optimal pipelining in super�computers,” Proc. 13th Sym�pos...
	McFarling, S. and J. L. Hennessy [1986]. “Reducing the cost of branches,” Proc. 13th Sym�posium o...
	Ramamoorthy, C. V. and H. F. Li [1977]. “Pipeline architecture,” ACM Computing Surveys 9:1 (March...
	Rymarczyk, J. [1982]. “Coding guidelines for pipelined processors,” Proc. Symposium on Archi�tect...
	Sites, R. [1979]. Instruction Ordering for the CRAY-1 Computer, Tech. Rep. 78-CS-023 (July), Dept...
	Smith, J. E. and A. R. Pleszkun [1988]. “Implementing precise interrupts in pipelined proces�sors...
	Weiss, S. and J. E. Smith [1984]. “Instruction issue logic for pipelined supercomputers,” Proc. 1...
	Exercises

	3.1� [15/15/15] <3.4,3.5> Use the following code fragment:
	loop: LW R1,0(R2) ADDI R1,R1,#1 SW 0(R2),R1 ADDI R2,R2,#4 SUB R4,R3,R2 BNEZ R4,Loop
	Assume that the initial value of R3 is R2 + 396.
	Throughout this exercise use the DLX integer pipeline and assume all memory accesses are cache hits.
	a. [15] <3.4,3.5> Show the timing of this instruction sequence for the DLX pipeline without any f...
	b. [15] <3.4,3.5> Show the timing of this instruction sequence for the DLX pipeline with normal f...
	c. [15] <3.4,3.5> Assuming the DLX pipeline with a single-cycle delayed branch and normal forward...

	3.2� [15/15/15] <3.4,3.5,3.7> Use the following code fragment:
	Loop: LD F0,0(R2) LD F4,0(R3) MULTD F0,F0,F4 ADDD F2,F0,F2 ADDI R2,R2,#8 ADDI R3,R3,#8 SUB R5,R4,...
	Assume that the initial value of R4 is R2 + 792.
	For this exercise assume the standard DLX integer pipeline (as shown in Figure 3.10) and the stan...
	a. [15] <3.4,3.5,3.7> Show the timing of this instruction sequence for the DLX FP pipeline withou...
	b. [15] <3.4,3.5,3.7> Show the timing of this instruction sequence for the DLX FP pipeline with n...
	c. [15] <3.4,3.5,3.7> Assuming the DLX FP pipeline with a single-cycle delayed branch and full by...

	3.3� [12/13/20/20/15/15] <3.2,3.4,3.5> For these problems, we will explore a pipeline for a regis...
	There is a set of ALU operations with format:
	ALUop Rdest, Rsrc1, Rsrc2
	or
	ALUop Rdest, Rsrc1, MEM
	where the ALUop is one of the following: Add, Subtract, And, Or, Load (Rsrc1 ignored), Store. Rsr...
	Branches use a full compare of two registers and are PC-relative. Assume that this machine is pip...
	IF
	RF
	ALU1
	MEM
	ALU2
	WB
	IF
	RF
	ALU1
	MEM
	ALU2
	WB
	IF
	RF
	ALU1
	MEM
	ALU2
	WB
	IF
	RF
	ALU1
	MEM
	ALU2
	WB
	IF
	RF
	ALU1
	MEM
	ALU2
	WB
	IF
	RF
	ALU1
	MEM
	ALU2
	WB
	The first ALU stage is used for effective address calculation for memory references and branches....
	a. [12] <3.2> Find the number of adders needed, counting any adder or incrementer; show a combina...
	b. [13] <3.2> Find the number of register read and write ports and memory read and write ports re...
	c. [20] <3.4> Determine any data forwarding for any ALUs that will be needed. Assume that there a...

	ADD R1, ... any instruction ADD ..., R1, ...
	d. [20] <3.4> Show all data forwarding requirements needed to avoid or reduce stalls when either ...
	e. [15] <3.4> Show all the remaining hazards that involve at least one unit other than an ALU as ...
	f. [15] <3.5> Show all control hazard types by example and state the length of the stall. Use a f...

	3.4� [10] <3.2> Consider the example on page 137 that compares the unpipelined and pipelined mach...
	3.5� [12] <3.1–3.5> A machine is called “underpipelined” if additional levels of pipelining can b...
	3.6� [20] <3.4> Add the forwarding entries for stores and for the zero detect unit (for branches)...
	ADD R1, ... any instruction SW ..., R1
	How is the forwarding handled for this case?
	3.7� [20] <3.4,3.9> Create a table showing the forwarding logic for the R4000 integer pipeline us...
	3.8� [15] <3.4,3.9> Create a table showing the R4000 integer hazard detection using the same form...
	3.9� [15] <3.5> Suppose the branch frequencies (as percentages of all instructions) are as follows:
	Conditional branches 20% Jumps and calls 5% Conditional branches 60% are taken
	We are examining a four-deep pipeline where the branch is resolved at the end of the second cycle...
	3.10� [20/20] <3.4> Suppose that we have the pipeline layout shown in Figure 3.64.
	Stage
	Function
	Instruction fetch
	Operand decode
	Execution or memory access (branch�resolution)
	FIGURE 3.64� Pipeline stages.

	All data dependences are between the register written in stage 3 of instruction i and a register ...
	We are considering a change in the machine organization that would write back the result of an in...
	a. [20] <3.4> Assume that we add no additional forwarding hardware for the four-stage pipeline. C...
	b. [20] <3.4> Now assume that we have used forwarding to eliminate the extra hazard intro�duced b...

	3.11� [20] <3.4,3.7> Construct a table like Figure�3.18 that shows the data hazard stalls for the...
	3.12� [20] <3.4,3.7> Construct the forwarding table for the DLX FP pipeline of Figure 3.44 as we ...
	3.13� [25] <3.4,3.7> Suppose DLX had only one register set. Construct the forwarding table for th...
	3.14� [15] <3.4,3.7> Construct a table like Figure�3.18 to check for WAW stalls in the DLX FP pip...
	3.15� [20] <3.4,3.7> Construct a table like Figure�3.18 that shows the structural stalls for the ...
	3.16� [35] <3.2–3.7> Change the DLX instruction simulator to be pipelined. Measure the frequency ...
	3.17� [35] <3.7> Using a DLX simulator, create a DLX pipeline simulator. Explore the impact of le...
	3.18� [40] <3.3–3.5> Write an instruction scheduler for DLX that works on DLX assembly language. ...

