

2

Instruction Set
Principles and
Examples 2

n
A n Add the number in storage location n into the accumulator.

E n If the number in the accumulator is greater than or equal to

zero execute next the order which stands in storage location;

otherwise proceed serially.

Z Stop the machine and ring the warning bell.

Wilkes and Renwick
Selection from the List of 18 Machine
Instructions for the EDSAC (1949)

2.1 Introduction 69

2.2 Classifying Instruction Set Architectures 70

2.3 Memory Addressing 73

2.4 Operations in the Instruction Set 80

2.5 Type and Size of Operands 85

2.6 Encoding an Instruction Set 87

2.7 Crosscutting Issues: The Role of Compilers 89

2.8 Putting It All Together: The DLX Architecture 96

2.9 Fallacies and Pitfalls 108

2.10 Concluding Remarks 111

2.11 Historical Perspective and References 112

Exercises 118
f the
ces
t. In

of in-
ntages
e some
ction

ing on

t in-
ent ar-
lder
 need

ure-
on the
In this chapter we concentrate on instruction set architecture—the portion o
machine visible to the programmer or compiler writer. This chapter introdu
the wide variety of design alternatives available to the instruction set architec
particular, this chapter focuses on four topics. First, we present a taxonomy
struction set alternatives and give some qualitative assessment of the adva
and disadvantages of various approaches. Second, we present and analyz
instruction set measurements that are largely independent of a specific instru
set. Third, we address the issue of languages and compilers and their bear
instruction set architecture. Finally, the Putting It All Together section shows how
these ideas are reflected in the DLX instruction set, which is typical of recen
struction set architectures. The appendices add four examples of these rec
chitectures—MIPS, Power PC, Precision Architecture, SPARC—and one o
architecture, the 80x86. Before we discuss how to classify architectures, we
to say something about instruction set measurement.

Throughout this chapter, we examine a wide variety of architectural meas
ments. These measurements depend on the programs measured and

2.1 Introduction

70

Chapter 2 Instruction Set Principles and Examples

inter-
ment

 that
lass of
 set of
rences
 ana-
. All

d
f the

 and

 this
The
ay be

y be
rary
tion.

ly two
uction,

ad

nd is

compilers used in making the measurements. The results should not be
preted as absolute, and you might see different data if you did the measure
with a different compiler or a different set of programs. The authors believe
the measurements shown in these chapters are reasonably indicative of a c
typical applications. Many of the measurements are presented using a small
benchmarks, so that the data can be reasonably displayed and the diffe
among programs can be seen. An architect for a new machine would want to
lyze a much larger collection of programs to make his architectural decisions
the measurements shown are dynamic—that is, the frequency of a measure
event is weighed by the number of times that event occurs during execution o
measured program.

We begin by exploring how instruction set architectures can be classified
analyzed.

The type of internal storage in the CPU is the most basic differentiation, so in
section we will focus on the alternatives for this portion of the architecture.
major choices are a stack, an accumulator, or a set of registers. Operands m
named explicitly or implicitly: The operands in a stack architecture are implicitly
on the top of the stack, in an accumulator architecture one operand is implicitly
the accumulator, and general-purpose register architectures have only explicit
operands—either registers or memory locations. The explicit operands ma
accessed directly from memory or may need to be first loaded into tempo
storage, depending on the class of instruction and choice of specific instruc
Figure 2.1 shows how the code sequence C = A + B would typically appear on
these three classes of instruction sets. As Figure 2.1 shows, there are real
classes of register machines. One can access memory as part of any instr
called register-memory architecture, and one can access memory only with lo
and store instructions, called load-store or register-register architecture. A third
class, not found in machines shipping today, keeps all operands in memory a
called a memory-memory architecture.

2.2 Classifying Instruction Set Architectures

Stack Accumulator
Register
(register-memory)

Register
(load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R1,B Load R2,B

Add Store C Store C,R1 Add R3,R1,R2

Pop C Store C,R3

FIGURE 2.1 The code sequence for C = A + B for four instruction sets. It is assumed
that A, B, and C all belong in memory and that the values of A and B cannot be destroyed.

2.2 Classifying Instruction Set Architectures

71

ures,
hitec-
) ma-

 the
to use
xam-

ient
s (see
 right,

s are
(since
gister

iters
hines
y de-
eral-
t be
 use

 they
ssion
 allo-

har-
l in-
as

 a re-
nds is
 GPR
ses in
LU

s are
ossi-
 we
gister-
Although most early machines used stack or accumulator-style architect
virtually every machine designed after 1980 uses a load-store register arc
ture. The major reasons for the emergence of general-purpose register (GPR
chines are twofold. First, registers—like other forms of storage internal to
CPU—are faster than memory. Second, registers are easier for a compiler
and can be used more effectively than other forms of internal storage. For e
ple, on a register machine the expression (A * B) – (C* D) – (E * F) may be eval-
uated by doing the multiplications in any order, which may be more effic
because of the location of the operands or because of pipelining concern
Chapter 3). But on a stack machine the expression must be evaluated left to
unless special operations or swaps of stack positions are done.

More importantly, registers can be used to hold variables. When variable
allocated to registers, the memory traffic reduces, the program speeds up
registers are faster than memory), and the code density improves (since a re
can be named with fewer bits than can a memory location). Compiler wr
would prefer that all registers be equivalent and unreserved. Older mac
compromise this desire by dedicating registers to special uses, effectivel
creasing the number of general-purpose registers. If the number of truly gen
purpose registers is too small, trying to allocate variables to registers will no
profitable. Instead, the compiler will reserve all the uncommitted registers for
in expression evaluation.

How many registers are sufficient? The answer of course depends on how
are used by the compiler. Most compilers reserve some registers for expre
evaluation, use some for parameter passing, and allow the remainder to be
cated to hold variables.

Two major instruction set characteristics divide GPR architectures. Both c
acteristics concern the nature of operands for a typical arithmetic or logica
struction (ALU instruction). The first concerns whether an ALU instruction h
two or three operands. In the three-operand format, the instruction contains
sult and two source operands. In the two-operand format, one of the opera
both a source and a result for the operation. The second distinction among
architectures concerns how many of the operands may be memory addres
ALU instructions. The number of memory operands supported by a typical A
instruction may vary from none to three. Combinations of these two attribute
shown in Figure 2.2, with examples of machines. Although there are seven p
ble combinations, three serve to classify nearly all existing machines. As
mentioned earlier, these three are register-register (also called load-store), re
memory, and memory-memory.

72

Chapter 2 Instruction Set Principles and Examples

own in
olutes:
ple-

asily
 of the
mber
itec-

.

-

The advantages and disadvantages of each of these alternatives are sh
Figure 2.3. Of course, these advantages and disadvantages are not abs
They are qualitative and their actual impact depends on the compiler and im
mentation strategy. A GPR machine with memory-memory operations can e
be subsetted by the compiler and used as a register-register machine. One
most pervasive architectural impacts is on instruction encoding and the nu
of instructions needed to perform a task.We will see the impact of these arch
tural alternatives on implementation approaches in Chapters 3 and 4.

Number of memory
addresses

Maximum number of
operands allowed Examples

0 3 SPARC, MIPS, Precision Architecture, PowerPC, ALPHA

1 2 Intel 80x86, Motorola 68000

2 2 VAX (also has three-operand formats)

3 3 VAX (also has two-operand formats)

FIGURE 2.2 Possible combinations of memory operands and total operands per typical ALU instruction with ex-
amples of machines. Machines with no memory reference per ALU instruction are called load-store or register-register
machines. Instructions with multiple memory operands per typical ALU instruction are called register-memory or memory-
memory, according to whether they have one or more than one memory operand.

Type Advantages Disadvantages

Register-
register
(0,3)

Simple, fixed-length instruction encoding. Simple
code-generation model. Instructions take similar
numbers of clocks to execute (see Ch 3).

Higher instruction count than architectures with
memory references in instructions. Some instruc-
tions are short and bit encoding may be wasteful

Register-
memory
(1,2)

Data can be accessed without loading first.
Instruction format tends to be easy to encode and
yields good density.

Operands are not equivalent since a source oper
and in a binary operation is destroyed. Encoding a
register number and a memory address in each
instruction may restrict the number of registers.
Clocks per instruction varies by operand location.

Memory-
memory
(3,3)

Most compact. Doesn’t waste registers for
temporaries.

Large variation in instruction size, especially for
three-operand instructions. Also, large variation
in work per instruction. Memory accesses create
memory bottleneck.

FIGURE 2.3 Advantages and disadvantages of the three most common types of general-purpose register ma-
chines. The notation (m, n) means m memory operands and n total operands. In general, machines with fewer alternatives
make the compiler’s task simpler since there are fewer decisions for the compiler to make. Machines with a wide variety of
flexible instruction formats reduce the number of bits required to encode the program. A machine that uses a small number
of bits to encode the program is said to have good instruction density—a smaller number of bits do as much work as a larger
number on a different architecture. The number of registers also affects the instruction size.

2.3 Memory Addressing

73

 those
ture,
om
igure

n of

ds.

erand
preted
 The
epen-

mpiler
piler,

 as a
 this
s (16
uble

rd.

ast-

(the
of the
 ad-
 byte
ns as
n ex-
dian
ared.

Summary: Classifying Instruction Set Architectures

Here and in subsections at the end of sections 2.3 to 2.7 we summarize
characteristics we would expect to find in a new instruction set architec
building the foundation for the DLX architecture introduced in section 2.8. Fr
this section we should clearly expect the use of general-purpose registers. F
2.3, combined with the following chapter on pipelining, lead to the expectatio
a register-register (also called load-store) architecture.

With the class of architecture covered, the next topic is addressing operan

Independent of whether the architecture is register-register or allows any op
to be a memory reference, it must define how memory addresses are inter
and how they are specified. We deal with these two topics in this section.
measurements presented here are largely, but not completely, machine ind
dent. In some cases the measurements are significantly affected by the co
technology. These measurements have been made using an optimizing com
since compiler technology is playing an increasing role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed
function of the address and the length? All the instruction sets discussed in
book are byte addressed and provide access for bytes (8 bits), half word
bits), and words (32 bits). Most of the machines also provide access for do
words (64 bits).

There are two different conventions for ordering the bytes within a wo
Little Endian byte order puts the byte whose address is “x...x00” at the le
significant position in the word (the little end). Big Endian byte order puts the
byte whose address is “x...x00” at the most-significant position in the word
big end). In Big Endian addressing, the address of a datum is the address
most-significant byte; while in Little Endian, the address of a datum is the
dress of the least-significant byte. When operating within one machine, the
order is often unnoticeable—only programs that access the same locatio
both words and bytes can notice the difference. Byte order is a problem whe
changing data among machines with different orderings, however. Little En
ordering also fails to match normal ordering of words when strings are comp
Strings appear “SDRAWKCAB” in the registers.

In many machines, accesses to objects larger than a byte must be aligned. An
access to an object of size s bytes at byte address A is aligned if A mod s = 0.
Figure 2.4 shows the addresses at which an access is aligned or misaligned.

2.3 Memory Addressing

74

Chapter 2 Instruction Set Principles and Examples

ign-
 on a
ore,
 mis-

es an
 the

e ma-
. For
 ma-
mory,
size

 sub-
dress
cify a
sed,

recent
ssing
hough
 on the

g
ions.
ction

ough
k, we
iption

Why would someone design a machine with alignment restrictions? Misal
ment causes hardware complications, since the memory is typically aligned
word or double-word boundary. A misaligned memory access will, theref
take multiple aligned memory references.Thus, even in machines that allow
aligned access, programs with aligned accesses run faster.

Even if data are aligned, supporting byte and half-word accesses requir
alignment network to align bytes and half words in registers. Depending on
instruction, the machine may also need to sign-extend the quantity. On som
chines a byte or half word does not affect the upper portion of a register
stores only the affected bytes in memory may be altered. (Although all the
chines discussed in this book permit byte and half-word accesses to me
only the Intel 80x86 supports ALU operations on register operands with a
shorter than a word.)

Addressing Modes

We now know what bytes to access in memory given an address. In this
section we will look at addressing modes—how architectures specify the ad
of an object they will access. In GPR machines, an addressing mode can spe
constant, a register, or a location in memory. When a memory location is u
the actual memory address specified by the addressing mode is called theeffec-
tive address.

Figure 2.5 shows all the data-addressing modes that have been used in
machines. Immediates or literals are usually considered memory-addre
modes (even though the value they access is in the instruction stream), alt
registers are often separated. We have kept addressing modes that depend
program counter, called PC-relative addressing, separate. PC-relative addressin
is used primarily for specifying code addresses in control transfer instruct
The use of PC-relative addressing in control instructions is discussed in se
2.4.

Figure 2.5 shows the most common names for the addressing modes, th
the names differ among architectures. In this figure and throughout the boo
will use an extension of the C programming language as a hardware descr
notation. In this figure, only one non-C feature is used: The left arrow (←) is used

Object addressed Aligned at byte offsets Misaligned at byte offsets

Byte 0,1,2,3,4,5,6,7 Never

Half word 0,2,4,6 1,3,5,7

Word 0,4 1,2,3,5,6,7

Double word 0 1,2,3,4,5,6,7

FIGURE 2.4 Aligned and misaligned accesses of objects. The byte offsets are specified
for the low-order three bits of the address.

2.3 Memory Addressing

75

r-

-

nts;
aver-
des.

for assignment. We also use the array Mem as the name for main memory and the a
ray Regs for registers. Thus, Mem[Regs[R1]] refers to the contents of the mem
ory location whose address is given by the contents of register 1 (R1). Later, we will
introduce extensions for accessing and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction cou
they also add to the complexity of building a machine and may increase the
age CPI (clock cycles per instruction) of machines that implement those mo

Addressing
mode Example instruction Meaning When used

Register Add R4,R3 Regs[R4] ←Regs[R4]+
Regs[R3]

When a value is in a register.

Immediate Add R4,#3 Regs[R4] ←Regs[R4]+3 For constants.

Displacement Add R4,100(R1) Regs[R4] ←Regs[R4]+
Mem[100+Regs[R1]]

Accessing local variables.

Register deferred
or indirect

Add R4,(R1) Regs[R4] ←Regs[R4]+
Mem[Regs[R1]]

Accessing using a pointer or a
computed address.

Indexed Add R3,(R1 + R2) Regs[R3] ←Regs[R3]+
Mem[Regs[R1]+Regs[R2]]

Sometimes useful in array
addressing: R1 = base of array;
R2 = index amount.

Direct or
absolute

Add R1,(1001) Regs[R1] ←Regs[R1]+
Mem[1001]

Sometimes useful for accessing
static data; address constant may
need to be large.

Memory indirect
or memory
deferred

Add R1,@(R3) Regs[R1] ←Regs[R1]+
Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer
p, then mode yields *p.

Autoincrement Add R1,(R2)+ Regs[R1] ←Regs[R1]+
Mem[Regs[R2]]
Regs[R2] ←Regs[R2]+ d

Useful for stepping through ar-
rays within a loop. R2 points to
start of array; each reference in-
crements R2 by size of an ele-
ment, d.

Autodecrement Add R1,–(R2) Regs[R2] ←Regs[R2]– d
Regs[R1] ←Regs[R1]+
Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/increment can
also act as push/pop to imple-
ment a stack.

Scaled Add
R1,100(R2)[R3]

Regs[R1] ← Regs[R1]+
Mem[100+Regs[R2]+Regs
[R3]* d]

Used to index arrays. May be
applied to any indexed address-
ing mode in some machines.

FIGURE 2.5 Selection of addressing modes with examples, meaning, and usage. The extensions to C used in the
hardware descriptions are defined above. In autoincrement/decrement and scaled addressing modes, the variable d desig-
nates the size of the data item being accessed (i.e., whether the instruction is accessing 1, 2, 4, or 8 bytes); this means that
these addressing modes are only useful when the elements being accessed are adjacent in memory. In our measurements,
we use the first name shown for each mode.

76 Chapter 2 Instruction Set Principles and Examples

he ar-

rns in
 few
emory
Most
archi-

e ad-
 used

hat of
t sizes,
t field
Thus, the usage of various addressing modes is quite important in helping t
chitect choose what to include.

Figure 2.6 shows the results of measuring addressing mode usage patte
three programs on the VAX architecture. We use the VAX architecture for a
measurements in this chapter because it has the fewest restrictions on m
addressing. For example, it supports all the modes shown in Figure 2.5.
measurements in this chapter, however, will use the more recent load-store
tectures to show how programs use instruction sets of current machines.

As Figure 2.6 shows, immediate and displacement addressing dominat
dressing mode usage. Let’s look at some properties of these two heavily
modes.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is t
the range of displacements used. Based on the use of various displacemen
a decision of what sizes to support can be made. Choosing the displacemen

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).
The data were taken on a VAX using three programs from SPEC89. Only the addressing
modes with an average frequency of over 1% are shown. The PC-relative addressing modes,
which are used almost exclusively for branches, are not included. Displacement mode in-
cludes all displacement lengths (8, 16, and 32 bit). Register modes, which are not counted,
account for one-half of the operand references, while memory addressing modes (including
immediate) account for the other half. The memory indirect mode on the VAX can use dis-
placement, autoincrement, or autodecrement to form the initial memory address; in these
programs, almost all the memory indirect references use displacement mode as the base. Of
course, the compiler affects what addressing modes are used; we discuss this further in sec-
tion 2.7. These major addressing modes account for all but a few percent (0% to 3%) of the
memory accesses.

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register deferred

Immediate

Displacement

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

1%
6%Memory indirect

TeX
spice
gcc 1%

Frequency of the addressing mode

2.3 Memory Addressing 77

ure-
hmark

 sec-
d by
sizes is important because they directly affect the instruction length. Meas
ments taken on the data access on a load-store architecture using our benc
programs are shown in Figure 2.7. We will look at branch offsets in the next
tion—data accessing patterns and branches are so different, little is gaine
combining them.

FIGURE 2.7 Displacement values are widely distributed. The x axis is log2 of the displacement; that is, the size of a
field needed to represent the magnitude of the displacement. These data were taken on the MIPS architecture, showing the
average of five programs from SPECint92 (compress, espresso, eqntott, gcc, li) and the average of five programs from
SPECfp92 (dudoc, ear, hydro2d, mdljdp2, su2cor). Although there are a large number of small values in this data, there are
also a fair number of large values. The wide distribution of displacement values is due to multiple storage areas for variables
and different displacements used to access them. The different storage areas and their access patterns are discussed fur-
ther in section 2.7. The graph shows only the magnitude of the displacement and not the sign, which is heavily affected by
the storage layout. The entry corresponding to 0 on the x axis shows the percentage of displacements of value 0. The vast
majority of the displacements are positive, but a majority of the largest displacements (14+ bits) are negative. Again, this is
due to the overall addressing scheme used by the compiler and might change with a different compilation scheme. Since
this data was collected on a machine with 16-bit displacements, it cannot tell us anything about accesses that might want to
use a longer displacement. Such accesses are broken into two separate instructions—the first of which loads the upper 16
bits of a base register. By counting the frequency of these “load high immediate” instructions, which have limited use for
other purposes, we can bound the number of accesses with displacements potentially larger than 16 bits. Such an analysis
indicates that we may actually require a displacement longer than 16 bits for about 1% of immediates on SPECint92 and
1% of those for SPECfp92. Relating this data to the graph above, if it were widened to 32 bits we would see 1% of immedi-
ates collectively between sizes 16 and 31 for both SPECint92 and SPECfp92. And if the displacement is larger than 15 bits,
it is likely to be quite a bit larger since such constants are large, as shown in Figure 2.9 on page 79.To evaluate the choice
of displacement length, we might also want to examine a cumulative distribution, as shown in Exercise 2.1 (see Figure 2.32
on page 119). In summary, 12 bits of displacement would capture about 75% of the full 32-bit displacements and 16 bits
should capture about 99%.

0%

5%

10%

15%

20%

25%

30%

1514131211109876543210

Floating-point average

Integer average

Percentage of
displacement

Number of bits needed for a displacement value

78 Chapter 2 Instruction Set Principles and Examples

y for
se oc-
ress

know
. The
es of

r im-
struc-
most
n ad-
, un-
Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primaril
branches), and in moves where a constant is wanted in a register. The last ca
curs for constants written in the code, which tend to be small, and for add
constants, which can be large. For the use of immediates it is important to
whether they need to be supported for all operations or for only a subset
chart in Figure 2.8 shows the frequency of immediates for the general class
integer operations in an instruction set.

Another important instruction set measurement is the range of values fo
mediates. Like displacement values, the sizes of immediate values affect in
tion lengths. As Figure 2.9 shows, immediate values that are small are
heavily used. Large immediates are sometimes used, however, most likely i
dressing calculations. The data in Figure 2.9 were taken on a VAX because

FIGURE 2.8 We see that for ALU operations about one-half to three-quarters of the
operations have an immediate operand, while 75% to 85% of compare operations use
an immediate operation. (For ALU operations, shifts by a constant amount are included as
operations with immediate operands.) For loads, the load immediate instructions load 16 bits
into either half of a 32-bit register. These load immediates are not loads in a strict sense be-
cause they do not reference memory. In some cases, a pair of load immediates may be used
to load a 32-bit constant, but this is rare. The compares include comparisons against zero
that are done in conditional branches based on this comparison. These measurements were
taken on the DLX architecture with full compiler optimization (see section 2.7). The compiler
attempts to use simple compares against zero for branches whenever possible, because
these branches are efficiently supported in the architecture. Note that the bottom bars show
that integer programs use immediates in about one-third of the instructions, while floating-
point programs use immediates in about one-tenth of the instructions. Floating-point pro-
grams have many data transfers and operations on floating-point data that do not have im-
mediate forms in the DLX instruction set. (These percentages are the averages of the same 10
programs as in Figure 2.7 on page 77.)

0% 50% 100%

78%
58%

35%

77%
87%Compares

ALU operations

All instructions

10%

10%

Loads
45%

Percentage of operations that use immediates

Integer average Floating-point average

2.3 Memory Addressing 79

these
 zero
nd to
ments
s.

pport
gister
dress-
of the
ion in
e dis-
least
 50%
like recent load-store architectures, it supports 32-bit long immediates. For
measurements the VAX has the drawback that many of its instructions have
as an implicit operand. These include instructions to compare against zero a
store zero into a word. Because of the use of these instructions, the measure
show less frequent use of zero than on architectures without such instruction

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to su
at least the following addressing modes: displacement, immediate, and re
deferred. Figure 2.6 on page 76 shows they represent 75% to 99% of the ad
ing modes used in our measurements. Second, we would expect the size
address for displacement mode to be at least 12 to 16 bits, since the capt
Figure 2.7 on page 77 suggests these sizes would capture 75% to 99% of th
placements. Third, we would expect the size of the immediate field to be at
8 to 16 bits. As the caption in Figure 2.9 suggests, these sizes would capture
to 80% of the immediates.

FIGURE 2.9 The distribution of immediate values is shown. The x axis shows the num-
ber of bits needed to represent the magnitude of an immediate value—0 means the immedi-
ate field value was 0. The vast majority of the immediate values are positive: Overall, less
than 6% of the immediates are negative.These measurements were taken on a VAX, which
supports a full range of immediates and sizes as operands to any instruction. The measured
programs are gcc, spice, and TeX. Note that 50% to 70% of the immediates fit within 8 bits
and 75% to 80% fit within 16 bits.

0%

10%

20%

30%

40%

50%

60%

322824201612840
Number of bits needed for an immediate value

gcc

TeX

spice

80 Chapter 2 Instruction Set Principles and Examples

rized,
most
. For
f in-
ular

make

epen-
tions

con-

mes.
i-
The operators supported by most instruction set architectures can be catego
as in Figure 2.10. One rule of thumb across all architectures is that the
widely executed instructions are the simple operations of an instruction set
example, Figure 2.11 shows 10 simple instructions that account for 96% o
structions executed for a collection of integer programs running on the pop
Intel 80x86. Hence the implementor of these instructions should be sure to
these fast, as they are the common case.

Because the measurements of branch and jump behavior are fairly ind
dent of other measurements, we examine the use of control-flow instruc
next.

Instructions for Control Flow

There is no consistent terminology for instructions that change the flow of
trol. In the 1950s they were typically called transfers. Beginning in 1960 the
name branch began to be used. Later, machines introduced additional na
Throughout this book we will use jump when the change in control is uncond
tional and branch when the change is conditional.

Operator type Examples

Arithmetic and logical Integer arithmetic and logical operations: add, and, subtract, or

Data transfer Loads-stores (move instructions on machines with memory addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point Floating-point operations: add, multiply

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel operations, compression/decompression operations

FIGURE 2.10 Categories of instruction operators and examples of each. All machines generally provide a full set of
operations for the first three categories. The support for system functions in the instruction set varies widely among archi-
tectures, but all machines must have some instruction support for basic system functions. The amount of support in the in-
struction set for the last four categories may vary from none to an extensive set of special instructions. Floating-point
instructions will be provided in any machine that is intended for use in an application that makes much use of floating point.
These instructions are sometimes part of an optional instruction set. Decimal and string instructions are sometimes primi-
tives, as in the VAX or the IBM 360, or may be synthesized by the compiler from simpler instructions. Graphics instructions
typically operate on many smaller data items in parallel; for example, performing eight 8-bit additions on two 64-bit operands.

2.4 Operations in the Instruction Set

2.4 Operations in the Instruction Set 81

erent,
ncies
nch-
We can distinguish four different types of control-flow change:

1. Conditional branches

2. Jumps

3. Procedure calls

4. Procedure returns

We want to know the relative frequency of these events, as each event is diff
may use different instructions, and may have different behavior. The freque
of these control-flow instructions for a load-store machine running our be
marks are shown in Figure 2.12.

Rank 80x86 instruction
Integer average

(% total executed)

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

FIGURE 2.11 The top 10 instructions for the 80x86. These percent-
ages are the average of the same five SPECint92 programs as in
Figure 2.7 on page 77.

FIGURE 2.12 Breakdown of control flow instructions into three classes: calls or re-
turns, jumps, and conditional branches. Each type is counted in one of three bars. Con-
ditional branches clearly dominate. The programs and machine used to collect these
statistics are the same as those in Figure 2.7.

0% 50% 100%

4%

86%
81%

6%

11%
13%Call/return

Jump

Conditional branch

Frequency of branch classes

Integer average Floating-point average

82 Chapter 2 Instruction Set Principles and Examples

ified.
 of
get is
 is to

e
pecify-
tive

. This
-

n at
 there
time.
he tar-
 used
 three
g

by
h
 all
sually

ts, a
g the
ts to
.13

ions.

y the
ir ad-

of the
 com-
ons as

onal
risons
d im-

that a
imple
The destination address of a control flow instruction must always be spec
This destination is specified explicitly in the instruction in the vast majority
cases—procedure return being the major exception—since for return the tar
not known at compile time. The most common way to specify the destination
supply a displacement that is added to the program counter, or PC. Control flow
instructions of this sort are called PC-relative. PC-relative branches or jumps ar
advantageous because the target is often near the current instruction, and s
ing the position relative to the current PC requires fewer bits. Using PC-rela
addressing also permits the code to run independently of where it is loaded
property, called position independence, can eliminate some work when the pro
gram is linked and is also useful in programs linked during execution.

To implement returns and indirect jumps in which the target is not know
compile time, a method other than PC-relative addressing is required. Here,
must be a way to specify the target dynamically, so that it can change at run
This dynamic address may be as simple as naming a register that contains t
get address; alternatively, the jump may permit any addressing mode to be
to supply the target address.These register indirect jumps are also useful for
other important features: case or switch statements found in many programmin
languages (which select among one of several alternatives), dynamically shared
libraries (which allow a library to be loaded only when it is actually invoked
the program), and virtual functions in object-oriented languages like C++ (whic
allow different routines to be called depending on the type of the data). In
three cases the target address is not known at compile time, and hence is u
loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targe
key question concerns how far branch targets are from branches. Knowin
distribution of these displacements will help in choosing what branch offse
support and thus will affect the instruction length and encoding. Figure 2
shows the distribution of displacements for PC-relative branches in instruct
About 75% of the branches are in the forward direction.

Since most changes in control flow are branches, deciding how to specif
branch condition is important. The three primary techniques in use and the
vantages and disadvantages are shown in Figure 2.14.

One of the most noticeable properties of branches is that a large number
comparisons are simple equality or inequality tests, and a large number are
parisons with zero. Thus, some architectures choose to treat these comparis
special cases, especially if a compare and branch instruction is being used. Fig-
ure 2.15 shows the frequency of different comparisons used for conditi
branching. The data in Figure 2.8 said that a large percentage of the compa
had an immediate operand, and while not shown, 0 was the most heavily use
mediate. When we combine this with the data in Figure 2.15, we can see
significant percentage (over 50%) of the integer compares in branches are s
tests for equality with 0.

2.4 Operations in the Instruction Set 83

 state
 archi-
Procedure calls and returns include control transfer and possibly some
saving; at a minimum the return address must be saved somewhere. Some

FIGURE 2.13 Branch distances in terms of number of instructions between the target
and the branch instruction. The most frequent branches in the integer programs are to tar-
gets that are four to seven instructions away. This tells us that short displacement fields often
suffice for branches and that the designer can gain some encoding density by having a short-
er instruction with a smaller branch displacement. These measurements were taken on a
load-store machine (DLX architecture). An architecture that requires fewer instructions for the
same program, such as a VAX, would have shorter branch distances. Similarly, the number
of bits needed for the displacement may change if the machine allows instructions to be ar-
bitrarily aligned. A cumulative distribution of this branch displacement data is shown in Exer-
cise 2.1 (see Figure 2.32 on page 119). The programs and machine used to collect these
statistics are the same as those in Figure 2.7.

Name How condition is tested Advantages Disadvantages

Condition
code (CC)

Special bits are set by ALU opera-
tions, possibly under program
control.

Sometimes condition
is set for free.

CC is extra state. Condition codes
constrain the ordering of instruc-
tions since they pass information
from one instruction to a branch.

Condition
register

Test arbitrary register with the result
of a comparison.

Simple. Uses up a register.

Compare and
branch

Compare is part of the branch. Often
compare is limited to subset.

One instruction rather
than two for a branch.

May be too much work per
instruction.

FIGURE 2.14 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on programs
show that this rarely happens. The major implementation problems with condition codes arise when the condition code is
set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the instruction. Ma-
chines with compare and branch often limit the set of compares and use a condition register for more complex compares.
Often, different techniques are used for branches based on floating-point comparison versus those based on integer com-
parison. This is reasonable since the number of branches that depend on floating-point comparisons is much smaller than
the number depending on integer comparisons.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1514131211109876543210

Bits of branch displacement

Floating-point average

Integer average

84 Chapter 2 Instruction Set Principles and Examples

 com-
 save
ters

 when
riables
1 that

ure
sepa-

il-
 a

ill be
. As

echa-
riable
h be-
eeds
tectures provide a mechanism to save the registers, while others require the
piler to generate instructions. There are two basic conventions in use to
registers. Caller saving means that the calling procedure must save the regis
that it wants preserved for access after the call. Callee saving means that the
called procedure must save the registers it wants to use. There are times
caller save must be used because of access patterns to globally visible va
in two different procedures. For example, suppose we have a procedure P
calls procedure P2, and both procedures manipulate the global variable x. If P1
had allocated x to a register it must be sure to save x to a location known by P2
before the call to P2. A compiler’s ability to discover when a called proced
may access register-allocated quantities is complicated by the possibility of
rate compilation and situations where P2 may not touch x but can call another
procedure, P3, that may access x. Because of these complications, most comp
ers will conservatively caller save any variable that may be accessed during
call.

In the cases where either convention could be used, some programs w
more optimal with callee save and some will be more optimal with caller save
a result, the most sophisticated compilers use a combination of the two m
nisms, and the register allocator may choose which register to use for a va
based on the convention. Later in this chapter we will examine the mismatc
tween sophisticated instructions for automatically saving registers and the n
of the compiler.

FIGURE 2.15 Frequency of different types of compares in conditional branches. This
includes both the integer and floating-point compares in branches. Remember that earlier
data in Figure 2.8 indicate that most integer comparisons are against an immediate operand.
The programs and machine used to collect these statistics are the same as those in
Figure 2.7.

0% 50% 100%

23%

37%
86%

7%

40%
7%Less than/ greater than or

equal

Greater than/ less than or
equal

Equal/ not equal

Frequency of comparison types in branches

Integer average Floating-point average

2.5 Type and Size of Operands 85

ions:
 com-
tions
itec-

anch,
 ex-

ns to

tives:
de—
 with
 oper-

owev-

oat-
lude
ting
 are

two’s
ctur-
 that
The

h op-
 char-
s and

, usu-

racter

en

inte-
n of
ency
rtant
ould
Summary: Operations in the Instruction Set

From this section we see the importance and popularity of simple instruct
load, store, add, subtract, move register-register, and, shift, compare equal,
pare not equal, branch, jump, call, and return. Although there are many op
for conditional branches, we would expect branch addressing in a new arch
ture to be able to jump to about 100 instructions either above or below the br
implying a PC-relative branch displacement of at least 8 bits. We would also
pect to see register-indirect and PC-relative addressing for jump instructio
support returns as well as many other features of current systems.

How is the type of an operand designated? There are two primary alterna
First, the type of an operand may be designated by encoding it in the opco
this is the method used most often. Alternatively, the data can be annotated
tags that are interpreted by the hardware. These tags specify the type of the
and, and the operation is chosen accordingly. Machines with tagged data, h
er, can only be found in computer museums.

Usually the type of an operand—for example, integer, single-precision fl
ing point, character—effectively gives its size. Common operand types inc
character (1 byte), half word (16 bits), word (32 bits), single-precision floa
point (also 1 word), and double-precision floating point (2 words). Characters
almost always in ASCII and integers are almost universally represented as
complement binary numbers. Until the early 1980s, most computer manufa
ers chose their own floating-point representation. Almost all machines since
time follow the same standard for floating point, the IEEE standard 754.
IEEE floating-point standard is discussed in detail in Appendix A.

Some architectures provide operations on character strings, although suc
erations are usually quite limited and treat each byte in the string as a single
acter. Typical operations supported on character strings are comparison
moves.

For business applications, some architectures support a decimal format
ally called packed decimal or binary-coded decimal;—4 bits are used to encode
the values 0–9, and 2 decimal digits are packed into each byte. Numeric cha
strings are sometimes called unpacked decimal, and operations—called packing
and unpacking—are usually provided for converting back and forth betwe
them.

Our benchmarks use byte or character, half word (short integer), word (
ger), and floating-point data types. Figure 2.16 shows the dynamic distributio
the sizes of objects referenced from memory for these programs. The frequ
of access to different data types helps in deciding what types are most impo
to support efficiently. Should the machine have a 64-bit access path, or w

2.5 Type and Size of Operands

86 Chapter 2 Instruction Set Principles and Examples

 it to
nment
f data
sed as

t ac-
rand

opera-
maller
read

: On a
dress-
expect
float-

 16-,
ress
port
 ma-
taking two cycles to access a double word be satisfactory? How important is
support byte accesses as primitives, which, as we saw earlier, require an alig
network? In Figure 2.16, memory references are used to examine the types o
being accessed. In some architectures, objects in registers may be acces
bytes or half words. However, such access is very infrequent—on the VAX, i
counts for no more than 12% of register references, or roughly 6% of all ope
accesses in these programs. The successor to the VAX not only removed
tions on data smaller than 32 bits, it also removed data transfers on these s
sizes: The first implementations of the Alpha required multiple instructions to
or write bytes or half words.

Note that Figure 2.16 was measured on a machine with 32-bit addresses
64-bit address machine the 32-bit addresses would be replaced by 64-bit ad
es. Hence as 64-bit address architectures become more popular, we would
that double-word accesses will be popular for integer programs as well as
ing-point programs.

Summary: Type and Size of Operands

From this section we would expect a new 32-bit architecture to support 8-,
and 32-bit integers and 64-bit IEEE 754 floating-point data; a new 64-bit add
architecture would need to support 64-bit integers as well. The level of sup
for decimal data is less clear, and it is a function of the intended use of the
chine as well as the effectiveness of the decimal support.

FIGURE 2.16 Distribution of data accesses by size for the benchmark programs. Ac-
cess to the major data type (word or double word) clearly dominates each type of program.
Half words are more popular than bytes because one of the five SPECint92 programs (eqn-
tott) uses half words as the primary data type, and hence they are responsible for 87% of the
data accesses (see Figure 2.31 on page 110). The double-word data type is used solely for
double-precision floating-point in floating-point programs. These measurements were taken
on the memory traffic generated on a 32-bit load-store architecture.

0% 40% 80%20% 60%

0%
19%

7%

31%
74%Word

Half word

Byte

0%

0%

Double word
69%

Frequency of reference by size

Integer average Floating-point average

2.6 Encoding an Instruction Set 87

oded
ffects
 the
d its

s with

 of in-
e oper-
5). For

is used
ly one
case,

f ad-
ce the
le in-
ding
hitect

.

 aver-

le in
e in
cho-
sac-

rcent-
t is
easi-

. The
all
opera-
e

Clearly the choices mentioned above will affect how the instructions are enc
into a binary representation for execution by the CPU. This representation a
not only the size of the compiled program, it affects the implementation of
CPU, which must decode this representation to quickly find the operation an
operands. The operation is typically specified in one field, called the opcode. As
we shall see, the important decision is how to encode the addressing mode
the operations.

This decision depends on the range of addressing modes and the degree
dependence between opcodes and modes. Some machines have one to fiv
ands with 10 addressing modes for each operand (see Figure 2.5 on page 7
such a large number of combinations, typically a separate address specifier is
needed for each operand: the address specifier tells what addressing mode
to access the operand. At the other extreme is a load-store machine with on
memory operand and only one or two addressing modes; obviously, in this
the addressing mode can be encoded as part of the opcode.

When encoding the instructions, the number of registers and the number o
dressing modes both have a significant impact on the size of instructions, sin
addressing mode field and the register field may appear many times in a sing
struction. In fact, for most instructions many more bits are consumed in enco
addressing modes and register fields than in specifying the opcode. The arc
must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible

2. The impact of the size of the register and addressing mode fields on the
age instruction size and hence on the average program size.

3. A desire to have instructions encode into lengths that will be easy to hand
the implementation. As a minimum, the architect wants instructions to b
multiples of bytes, rather than an arbitrary length. Many architects have
sen to use a fixed-length instruction to gain implementation benefits while
rificing average code size.

Since the addressing modes and register fields make up such a large pe
age of the instruction bits, their encoding will significantly affect how easy i
for an implementation to decode the instructions. The importance of having
ly decoded instructions is discussed in Chapter 3.

Figure 2.17 shows three popular choices for encoding the instruction set
first we call variable, since it allows virtually all addressing modes to be with
operations. This style is best when there are many addressing modes and
tions. The second choice we call fixed, since it combines the operation and th

2.6 Encoding an Instruction Set

88 Chapter 2 Instruction Set Principles and Examples

ingle
 and

ize of
bits as
ly in
eger
n data
rd al-
k of
duce
addressing mode into the opcode. Often fixed encoding will have only a s
size for all instructions; it works best when there are few addressing modes
operations. The trade-off between variable encoding and fixed encoding is s
programs versus ease of decoding in the CPU. Variable tries to use as few
possible to represent the program, but individual instructions can vary wide
both size and the amount of work to be performed. For example, the VAX int
add can vary in size between 3 and 19 bytes and vary between 0 and 6 i
memory references. Given these two poles of instruction set design, the thi
ternative immediately springs to mind: Reduce the variability in size and wor
the variable architecture but provide multiple instruction lengths so as to re
code size. This hybrid approach is the third encoding alternative.

FIGURE 2.17 Three basic variations in instruction encoding. The variable format can
support any number of operands, with each address specifier determining the addressing
mode for that operand. The fixed format always has the same number of operands, with the
addressing modes (if options exist) specified as part of the opcode (see also Figure C.3 on
page C-4). Although the fields tend not to vary in their location, they will be used for different
purposes by different instructions. The hybrid approach will have multiple formats specified
by the opcode, adding one or two fields to specify the addressing mode and one or two fields
to specify the operand address (see also Figure D.7 on page D-12).

Operation &
no. of operands

Address
specifier 1

Address
field 1

Address
field 1

Operation Address
field 2

Address
field 3

Address
specifier

Operation Address
field

Address
specifier 1

Operation Address
specifier 2

Address
field

Address
specifier

Operation Address
field 1

Address
field 2

Address
specifier n

Address
field n

(a) Variable (e.g., VAX)

(b) Fixed (e.g., DLX, MIPS, Power PC, Precision Architecture, SPARC)

(c) Hybrid (e.g., IBM 360/70, Intel 80x86)

2.7 Crosscutting Issues: The Role of Compilers 89

exam-
4 and
.

:

and
 the
g the

econd
o

mode

ng
 total

 prior
riable

ted in
inter-
 and
er.
set
will
 pro-

lop-
ler, an
rchi-
g. Be-
iler,
ntly
 the
To make these general classes more specific, this book contains several
ples. Fixed formats of five machines can be seen in Figure C.3 on page C-
the hybrid formats of the Intel 80x86 can be seen in Figure D.8 on page D-13

Let’s look at a VAX instruction to see an example of the variable encoding

addl3 r1,737(r2),(r3)

The name addl3 means a 32-bit integer add instruction with three operands,
this opcode takes 1 byte. A VAX address specifier is 1 byte, generally with
first 4 bits specifying the addressing mode and the second 4 bits specifyin
register used in that addressing mode. The first operand specifier—r1 —indicates
register addressing using register 1, and this specifier is 1 byte long. The s
operand specifier—737(r2) —indicates displacement addressing. It has tw
parts: The first part is a byte that specifies the 16-bit indexed addressing
and base register (r2); the second part is the 2-byte-long displacement (737). The
third operand specifier—(r3)—specifies register indirect addressing mode usi
register 3. Thus, this instruction has two data memory accesses, and the
length of the instruction is

1 + (1) + (1+2) + (1) = 6 bytes

The length of VAX instructions varies between 1 and 53 bytes.

Summary: Encoding the Instruction Set

Decisions made in the components of instruction set design discussed in
sections determine whether or not the architect has the choice between va
and fixed instruction encodings. Given the choice, the architect more interes
code size than performance will pick variable encoding, and the one more
ested in performance than code size will pick fixed encoding. In Chapters 3
4, the impact of variability on performance of the CPU will be discussed furth

We have almost finished laying the groundwork for the DLX instruction
architecture that will be introduced in section 2.8. But before we do that, it
be helpful to take a brief look at recent compiler technology and its effect on
gram properties.

Today almost all programming is done in high-level languages. This deve
ment means that since most instructions executed are the output of a compi
instruction set architecture is essentially a compiler target. In earlier times, a
tectural decisions were often made to ease assembly language programmin
cause performance of a computer will be significantly affected by the comp
understanding compiler technology today is critical to designing and efficie
implementing an instruction set. In earlier days it was popular to try to isolate

2.7 Crosscutting Issues: The Role of Compilers

90 Chapter 2 Instruction Set Principles and Examples

itec-
cture

ay’s
 that
piler
his
the
s it

e of
compiler technology and its effect on hardware performance from the arch
ture and its performance, just as it was popular to try to separate an archite
from its implementation. This separation is essentially impossible with tod
compilers and machines. Architectural choices affect the quality of the code
can be generated for a machine and the complexity of building a good com
for it. Isolating the compiler from the hardware is likely to be misleading. In t
section we will discuss the critical goals in the instruction set primarily from
compiler viewpoint. What features will lead to high-quality code? What make
easy to write efficient compilers for an architecture?

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. The structur
recent compilers is shown in Figure 2.18.

FIGURE 2.18 Current compilers typically consist of two to four passes, with more
highly optimizing compilers having more passes. A pass is simply one phase in which
the compiler reads and transforms the entire program. (The term phase is often used inter-
changeably with pass.) The optimizing passes are designed to be optional and may be
skipped when faster compilation is the goal and lower quality code is acceptable. This struc-
ture maximizes the probability that a program compiled at various levels of optimization will
produce the same output when given the same input. Because the optimizing passes are also
separated, multiple languages can use the same optimizing and code-generation passes.
Only a new front end is required for a new language. The high-level optimization mentioned
here, procedure inlining, is also called procedure integration.

Language dependent;
machine independent

Dependencies
Transform language to
common intermediate form

Function

Front-end per
language

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation

For example, procedure inlining
and loop transformations

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Somewhat language dependent,
largely machine independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

2.7 Crosscutting Issues: The Role of Compilers 91

m-
ally,
ug-

n the
ively
cture
bug-

he
ture
r and
zing
 per-
il.
d re-
oth
bout
ilers
now
lem

t ar-

on
 in a

tation
t be

mory
e ex-
own

icates
 glo-

t per-
he

style

ter

nt
A compiler writer’s first goal is correctness—all valid programs must be co
piled correctly. The second goal is usually speed of the compiled code. Typic
a whole set of other goals follows these two, including fast compilation, deb
ging support, and interoperability among languages. Normally, the passes i
compiler transform higher-level, more abstract representations into progress
lower-level representations, eventually reaching the instruction set. This stru
helps manage the complexity of the transformations and makes writing a
free compiler easier.

The complexity of writing a correct compiler is a major limitation on t
amount of optimization that can be done. Although the multiple-pass struc
helps reduce compiler complexity, it also means that the compiler must orde
perform some transformations before others. In the diagram of the optimi
compiler in Figure 2.18, we can see that certain high-level optimizations are
formed long before it is known what the resulting code will look like in deta
Once such a transformation is made, the compiler can’t afford to go back an
visit all steps, possibly undoing transformations. This would be prohibitive, b
in compilation time and in complexity. Thus, compilers make assumptions a
the ability of later steps to deal with certain problems. For example, comp
usually have to choose which procedure calls to expand inline before they k
the exact size of the procedure being called. Compiler writers call this prob
the phase-ordering problem.

How does this ordering of transformations interact with the instruction se
chitecture? A good example occurs with the optimization called global common
subexpression elimination. This optimization finds two instances of an expressi
that compute the same value and saves the value of the first computation
temporary. It then uses the temporary value, eliminating the second compu
of the expression. For this optimization to be significant, the temporary mus
allocated to a register. Otherwise, the cost of storing the temporary in me
and later reloading it may negate the savings gained by not recomputing th
pression. There are, in fact, cases where this optimization actually slows d
code when the temporary is not register allocated. Phase ordering compl
this problem, because register allocation is typically done near the end of the
bal optimization pass, just before code generation. Thus, an optimizer tha
forms this optimization must assume that the register allocator will allocate t
temporary to a register.

Optimizations performed by modern compilers can be classified by the
of the transformation, as follows:

1. High-level optimizations are often done on the source with output fed to la
optimization passes.

2. Local optimizations optimize code only within a straight-line code fragme
(called a basic block by compiler people).

92 Chapter 2 Instruction Set Principles and Examples

tro-

i-

g up
por-
lgo-

for al-
h the

 that

ore)
 and
not
algo-
is to

cal
code
 last
ing
iza-

how
tions:
d to al-
at the
a:

k on
 rela-

 than
-
k.
3. Global optimizations extend the local optimizations across branches and in
duce a set of transformations aimed at optimizing loops.

4. Register allocation.

5. Machine-dependent optimizations attempt to take advantage of specific arch
tectural knowledge.

Because of the central role that register allocation plays, both in speedin
the code and in making other optimizations useful, it is one of the most im
tant—if not the most important—optimizations. Recent register allocation a
rithms are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates
location to a register and then to use the graph to allocate registers. Althoug
problem of coloring a graph is NP-complete, there are heuristic algorithms
work well in practice.

Graph coloring works best when there are at least 16 (and preferably m
general-purpose registers available for global allocation for integer variables
additional registers for floating point. Unfortunately, graph coloring does
work very well when the number of registers is small because the heuristic
rithms for coloring the graph are likely to fail. The emphasis in the approach
achieve 100% allocation of active variables.

It is sometimes difficult to separate some of the simpler optimizations—lo
and machine-dependent optimizations—from transformations done in the
generator. Examples of typical optimizations are given in Figure 2.19. The
column of Figure 2.19 indicates the frequency with which the listed optimiz
transforms were applied to the source program. The effect of various optim
tions on instructions executed for two programs is shown in Figure 2.20.

The Impact of Compiler Technology on the Architect’s
Decisions

The interaction of compilers and high-level languages significantly affects
programs use an instruction set architecture. There are two important ques
How are variables allocated and addressed? How many registers are neede
locate variables appropriately? To address these questions, we must look
three separate areas in which current high-level languages allocate their dat

■ The stack is used to allocate local variables. The stack is grown and shrun
procedure call or return, respectively. Objects on the stack are addressed
tive to the stack pointer and are primarily scalars (single variables) rather
arrays. The stack is used for activation records, not as a stack for evaluating ex
pressions. Hence values are almost never pushed or popped on the stac

2.7 Crosscutting Issues: The Role of Compilers 93

glo-
ays or

 dis-
y not
■ The global data area is used to allocate statically declared objects, such as
bal variables and constants. A large percentage of these objects are arr
other aggregate data structures.

■ The heap is used to allocate dynamic objects that do not adhere to a stack
cipline. Objects in the heap are accessed with pointers and are typicall
scalars.

Optimization name Explanation
Percentage of the total num-
ber of optimizing transforms

High-level At or near the source level; machine-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression elimination Replace two instances of the same
computation by single copy

18%

Constant propagation Replace all instances of a variable that
is assigned a constant with the constant

22%

Stack height reduction Rearrange expression tree to minimize re-
sources needed for expression evaluation

N.M.

Global Across a branch

Global common subexpression
elimination

Same as local, but this version crosses
branches

13%

Copy propagation Replace all instances of a variable A that
has been assigned X (i.e., A = X) with X

11%

Code motion Remove code from a loop that computes
same value each iteration of the loop

16%

Induction variable elimination Simplify/eliminate array-addressing
calculations within loops

2%

Machine-dependent Depends on machine knowledge

Strength reduction Many examples, such as replace multiply
by a constant with adds and shifts

N.M.

Pipeline scheduling Reorder instructions to improve pipeline
performance

N.M.

Branch offset optimization Choose the shortest branch displacement
that reaches target

N.M.

FIGURE 2.19 Major types of optimizations and examples in each class. The third column lists the static frequency with
which some of the common optimizations are applied in a set of 12 small FORTRAN and Pascal programs. The percentage
is the portion of the static optimizations that are of the specified type. These data tell us about the relative frequency of oc-
currence of various optimizations. There are nine local and global optimizations done by the compiler included in the mea-
surement. Six of these optimizations are covered in the figure, and the remaining three account for 18% of the total static
occurrences. The abbreviation N.M. means that the number of occurrences of that optimization was not measured. Machine-
dependent optimizations are usually done in a code generator, and none of those was measured in this experiment. Data
from Chow [1983] (collected using the Stanford UCODE compiler).

94 Chapter 2 Instruction Set Principles and Examples

 for
cated
e stack

o put
piler

e it is
. A
Register allocation is much more effective for stack-allocated objects than
global variables, and register allocation is essentially impossible for heap-allo
objects because they are accessed with pointers. Global variables and som
variables are impossible to allocate because they are aliased, which means that
there are multiple ways to refer to the address of a variable, making it illegal t
it into a register. (Most heap variables are effectively aliased for today’s com
technology.) For example, consider the following code sequence, where & returns
the address of a variable and * dereferences a pointer:

p = &a –– gets address of a in p

a = ... –– assigns to a directly

* p = ... –– uses p to assign to a

...a... -- accesses a

The variable a could not be register allocated across the assignment to * p with-
out generating incorrect code. Aliasing causes a substantial problem becaus
often difficult or impossible to decide what objects a pointer may refer to
compiler must be conservative; many compilers will not allocate any local vari-
ables of a procedure in a register when there is a pointer that may refer to one of
the local variables.

FIGURE 2.20 Change in instruction count for the programs hydro2d and li from the SPEC92 as compiler optimi-
zation levels vary. Level 0 is the same as unoptimized code. These experiments were perfomed on the MIPS compilers.
Level 1 includes local optimizations, code scheduling, and local register allocation. Level 2 includes global optimizations,
loop transformations (software pipelining), and global register allocation. Level 3 adds procedure integration.

li level 0

0% 20% 40% 60% 80% 100%

li level 1

li level 2

li level 3

hydro l 0

hydro l 1

hydro l 2

hydro l 3

100%

89%

75%

73%

100%

36%

26%

26%

Program and compiler
optimization level

FLOPs Loads-stores Integer ALUBranches/calls

Percent of unoptimized instructions executed

2.7 Crosscutting Issues: The Role of Compilers 95

tate-

bally
s that
e.

rin-

ating
 may

rties
t will
.

n in-
des—
nal
es are
n be
nera-
ner-

 this
truc-
is-

e
 may
rrect
e at-

r
eg-
 size

 is no
com-
 the

of the
ory

d be-
pute
How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple s
ments like A = B + C. Most programs are locally simple, and simple translations
work fine. Rather, complexity arises because programs are large and glo
complex in their interactions, and because the structure of compilers mean
decisions must be made about what code sequence is best one step at a tim

Compiler writers often are working under their own corollary of a basic p
ciple in architecture: Make the frequent cases fast and the rare case correct. That
is, if we know which cases are frequent and which are rare, and if gener
code for both is straightforward, then the quality of the code for the rare case
not be very important—but it must be correct!

Some instruction set properties help the compiler writer. These prope
should not be thought of as hard and fast rules, but rather as guidelines tha
make it easier to write a compiler that will generate efficient and correct code

1. Regularity;—Whenever it makes sense, the three primary components of a
struction set—the operations, the data types, and the addressing mo
should be orthogonal. Two aspects of an architecture are said to be orthogo
if they are independent. For example, the operations and addressing mod
orthogonal if for every operation to which a certain addressing mode ca
applied, all addressing modes are applicable. This helps simplify code ge
tion and is particularly important when the decision about what code to ge
ate is split into two passes in the compiler. A good counterexample of
property is restricting what registers can be used for a certain class of ins
tions. This can result in the compiler finding itself with lots of available reg
ters, but none of the right kind!

2. Provide primitives, not solutions—Special features that “match” a languag
construct are often unusable. Attempts to support high-level languages
work only with one language, or do more or less than is required for a co
and efficient implementation of the language. Some examples of how thes
tempts have failed are given in section 2.9.

3. Simplify trade-offs among alternatives—One of the toughest jobs a compile
writer has is figuring out what instruction sequence will be best for every s
ment of code that arises. In earlier days, instruction counts or total code
might have been good metrics, but—as we saw in the last chapter—this
longer true. With caches and pipelining, the trade-offs have become very
plex. Anything the designer can do to help the compiler writer understand
costs of alternative code sequences would help improve the code. One
most difficult instances of complex trade-offs occurs in a register-mem
architecture in deciding how many times a variable should be reference
fore it is cheaper to load it into a register. This threshold is hard to com
and, in fact, may vary among models of the same architecture.

96 Chapter 2 Instruction Set Principles and Examples

 at
s of

om-

ask is
 the

ction
 sepa-
ing
ress-

ieces
lify

t that
ss is

put-

t it
ost
y tak-
 be

0

rals.

s

pro-
un-
 and
th,
4. Provide instructions that bind the quantities known at compile time as con-
stants—A compiler writer hates the thought of the machine interpreting
runtime a value that was known at compile time. Good counterexample
this principle include instructions that interpret values that were fixed at c
pile time. For instance, the VAX procedure call instruction (calls) dynami-
cally interprets a mask saying what registers to save on a call, but the m
fixed at compile time. However, in some cases it may not be known by
caller whether separate compilation was used.

Summary: The Role of Compilers

This section leads to several recommendations. First, we expect a new instru
set architecture to have at least 16 general-purpose registers—not counting
rate registers for floating-point numbers—to simplify allocation of registers us
graph coloring. The advice on orthogonality suggests that all supported add
ing modes apply to all instructions that transfer data. Finally, the last three p
of advice of the last subsection—provide primitives instead of solutions, simp
trade-offs between alternatives, don’t bind constants at runtime—all sugges
it is better to err on the side of simplicity. In other words, understand that le
more in the design of an instruction set.

In many places throughout this book we will have occasion to refer to a com
er’s “machine language.” The machine we use is a mythical computer called
“MIX .” MIX is very much like nearly every computer in existence, except tha
is, perhaps, nicer … MIX is the world’s first polyunsaturated computer. Like m
machines, it has an identifying number—the 1009. This number was found b
ing 16 actual computers which are very similar to MIX and on which MIX can
easily simulated, then averaging their number with equal weight:

 (360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220 + S200
+ 920 + 601 + H800 + PDP-4 + II)/16 = 1009.

The same number may be obtained in a simpler way by taking Roman nume

Donald Knuth, The Art of Computer Programming, Volume I: Fundamental Algorithm

In this section we will describe a simple load-store architecture called DLX (
nounced “Deluxe”). The authors believe DLX to be the world’s second poly
saturated computer—the average of a number of recent experimental
commercial machines that are very similar in philosophy to DLX. Like Knu

2.8 Putting It All Together: The DLX Architecture

2.8 Putting It All Together: The DLX Architecture 97

oman

,
10,

bser-
cuss
tions

ress
rred.

the
ister-
-rela-

s and

nd

ting-
struc-

ike

ng

 re-
cture
nd it
we derived the name of our machine from an average expressed in R
numerals:

(AMD 29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A
MIPS M/1000, Motorola 88K, RISC I, SGI 4D/60, SPARCstation-1, Sun-4/1
Sun-4/260) / 13 = 560 = DLX.

The instruction set architecture of DLX and its ancestors was based on o
vations similar to those covered in the last sections. (In section 2.11 we dis
how and why these architectures became popular.) Reviewing our expecta
from each section:

■ Section 2.2—Use general-purpose registers with a load-store architecture.

■ Section 2.3—Support these addressing modes: displacement (with an add
offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register defe

■ Section 2.4—Support these simple instructions, since they will dominate
number of instructions executed: load, store, add, subtract, move reg
register, and, shift, compare equal, compare not equal, branch (with a PC
tive address at least 8 bits long), jump, call, and return.

■ Section 2.5—Support these data sizes and types: 8-, 16-, and 32-bit integer
64-bit IEEE 754 floating-point numbers.

■ Section 2.6—Use fixed instruction encoding if interested in performance a
use variable instruction encoding if interested in code size.

■ Section 2.7—Provide at least 16 general-purpose registers plus separate floa
point registers, be sure all addressing modes apply to all data transfer in
tions, and aim for a minimalist instruction set.

We introduce DLX by showing how it follows these recommendations. L
most recent machines, DLX emphasizes

■ A simple load-store instruction set

■ Design for pipelining efficiency, including a fixed instruction set encodi
(discussed in Chapter 3)

■ Efficiency as a compiler target

DLX provides a good architectural model for study, not only because of the
cent popularity of this type of machine, but also because it is an easy archite
to understand. We will use this architecture again in Chapters 3 and 4, a
forms the basis for a number of exercises and programming projects.

98 Chapter 2 Instruction Set Principles and Examples

R31.
sed

uble-
2, ...,
 and

ter to

s. An
t the
 be-

 data
alf
orted
uch as
l also
cision
early
g an

int.
n bit
d on

th 16-
 dis-
d by
ough

. As
tores

 types
 a half
on or
sses
Registers for DLX

DLX has 32 32-bit general-purpose registers (GPRs), named R0, R1, …,
Additionally, there is a set of floating-point registers (FPRs), which can be u
as 32 single-precision (32-bit) registers or as even-odd pairs holding do
precision values. Thus, the 64-bit floating-point registers are named F0, F
F28, F30. Both single- and double-precision floating-point operations (32-bit
64-bit) are provided.

The value of R0 is always 0. We shall see later how we can use this regis
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the integer register
example is the floating-point status register, used to hold information abou
results of floating-point operations. There are also instructions for moving
tween a FPR and a GPR.

Data types for DLX

The data types are 8-bit bytes, 16-bit half words, and 32-bit words for integer
and 32-bit single precision and 64-bit double precision for floating point. H
words were added to the minimal set of recommended data types supp
because they are found in languages like C and popular in some programs, s
the operating systems, concerned about size of data structures. They wil
become more popular as Unicode becomes more widely used. Single-pre
floating-point operands were added for similar reasons. (Remember the
warning that you should measure many more programs before designin
instruction set.)

The DLX operations work on 32-bit integers and 32- or 64-bit floating po
Bytes and half words are loaded into registers with either zeros or the sig
replicated to fill the 32 bits of the registers. Once loaded, they are operate
with the 32-bit integer operations.

Addressing modes for DLX data transfers

The only data addressing modes are immediate and displacement, both wi
bit fields. Register deferred is accomplished simply by placing 0 in the 16-bit
placement field, and absolute addressing with a 16-bit field is accomplishe
using register 0 as the base register. This gives us four effective modes, alth
only two are supported in the architecture.

DLX memory is byte addressable in Big Endian mode with a 32-bit address
it is a load-store architecture, all memory references are through loads or s
between memory and either the GPRs or the FPRs. Supporting the data
mentioned above, memory accesses involving the GPRs can be to a byte, to
word, or to a word. The FPRs may be loaded and stored with single-precisi
double-precision words (using a pair of registers for DP). All memory acce
must be aligned.

2.8 Putting It All Together: The DLX Architecture 99

pcode.
ll in-
truc-
for
sses.

 oth-
pera-

ored,
s oc-
pair.
 The
ples
DLX Instruction Format

Since DLX has just two addressing modes, these can be encoded into the o
Following the advice on making the machine easy to pipeline and decode, a
structions are 32 bits with a 6-bit primary opcode. Figure 2.21 shows the ins
tion layout. These formats are simple while providing 16-bit fields
displacement addressing, immediate constants, or PC-relative branch addre

DLX Operations

DLX supports the list of simple operations recommended above plus a few
ers. There are four broad classes of instructions: loads and stores, ALU o
tions, branches and jumps, and floating-point operations.

Any of the general-purpose or floating-point registers may be loaded or st
except that loading R0 has no effect. Single-precision floating-point number
cupy a single floating-point register, while double-precision values occupy a
Conversions between single and double precision must be done explicitly.
floating-point format is IEEE 754 (see Appendix A). Figure 2.22 gives exam

FIGURE 2.21 Instruction layout for DLX. All instructions are encoded in one of three
types.

I-type instruction

rs1 rd Immediate

Encodes: Loads and stores of bytes, words, half words
All immediates (rd rs1 op immediate)

6 5 5 16

Conditional branch instructions (rs1 is register, rd unused)
Jump register, jump and link register
 (rd = 0, rs1 = destination, immediate = 0)

R-type instruction

rs1 rs2

Register–register ALU operations: rd rs1 func rs2
 Function encodes the data path operation: Add, Sub, . . .
 Read/write special registers and moves

6 5 5 115

func

Opcode

J-type instruction

Offset added to PC

6 26

Jump and jump and link
Trap and return from exception

Opcode

Opcode rd

–‹

–‹

100 Chapter 2 Instruction Set Principles and Examples

rs in
a few

-

eled
digit

d by

 side
of the load and store instructions. A complete list of the instructions appea
Figure 2.25 (page 104). To understand these figures we need to introduce
additional extensions to our C description language:

■ A subscript is appended to the symbol ← whenever the length of the datum be
ing transferred might not be clear. Thus, ←n means transfer an n-bit quantity.
We use x, y ← z to indicate that z should be transferred to x and y.

■ A subscript is used to indicate selection of a bit from a field. Bits are lab
from the most-significant bit starting at 0. The subscript may be a single
(e.g., Regs[R4] 0 yields the sign bit of R4) or a subrange (e.g., Regs[R3] 24..31

yields the least-significant byte of R3).

■ The variable Mem, used as an array that stands for main memory, is indexe
a byte address and may transfer any number of bytes.

■ A superscript is used to replicate a field (e.g., 024 yields a field of zeros of
length 24 bits).

■ The symbol ## is used to concatenate two fields and may appear on either
of a data transfer.

Example instruction Instruction name Meaning

LW R1,30(R2) Load word Regs[R1] ←32 Mem[30+Regs[R2]]

LW R1,1000(R0) Load word Regs[R1] ←32 Mem[1000+0]

LB R1,40(R3) Load byte Regs[R1] ←32 (Mem[40+Regs[R3]] 0) 24 ##
Mem[40+Regs[R3]]

LBU R1,40(R3) Load byte unsigned Regs[R1] ←32 0 24 ## Mem[40+Regs[R3]]

LH R1,40(R3) Load half word Regs[R1] ←32 (Mem[40+Regs[R3]] 0) 16 ##
Mem[40+Regs[R3]]##Mem[41+Regs[R3]]

LF F0,50(R3) Load float Regs[F0] ←32 Mem[50+Regs[R3]]

LD F0,50(R2) Load double Regs[F0]##Regs[F1] ←64 Mem[50+Regs[R2]]

SW R3,500(R4) Store word Mem[500+Regs[R4]] ←32 Regs[R3]

SF F0,40(R3) Store float Mem[40+Regs[R3]] ←32 Regs[F0]

SD F0,40(R3) Store double Mem[40+Regs[R3]] ←32 Regs[F0];
Mem[44+Regs[R3]] ←32 Regs[F1]

SH R3,502(R2) Store half Mem[502+Regs[R2]] ←16 Regs[R3] 16..31

SB R2,41(R3) Store byte Mem[41+Regs[R3]] ←8 Regs[R2] 24..31

FIGURE 2.22 The load and store instructions in DLX. All use a single addressing mode and require that the memory
value be aligned. Of course, both loads and stores are available for all the data types shown.

2.8 Putting It All Together: The DLX Architecture 101

side

 R8 is
10.

de

iate,
a
 be
ss in

ing a
0, and
. (We
e

gis-
rations
so on.
e ex-

 jump
ress
dded
A summary of the entire description language appears on the back in
cover. As an example, assuming that R8 and R10 are 32-bit registers:

Regs[R10] 16..31 ← 16(Mem[Regs[R8]] 0) 8 ## Mem[Regs[R8]]

means that the byte at the memory location addressed by the contents of
sign-extended to form a 16-bit quantity that is stored into the lower half of R
(The upper half of R10 is unchanged.)

All ALU instructions are register-register instructions. The operations inclu
simple arithmetic and logical operations: add, subtract, AND, OR, XOR, and shifts.
Immediate forms of all these instructions, with a 16-bit sign-extended immed
are provided. The operation LHI (load high immediate) loads the top half of
register, while setting the lower half to 0. This allows a full 32-bit constant to
built in two instructions, or a data transfer using any constant 32-bit addre
one extra instruction.

As mentioned above, R0 is used to synthesize popular operations. Load
constant is simply an add immediate where one of the source operands is R
a register-register move is simply an add where one of the sources is R0
sometimes use the mnemonic LI , standing for load immediate, to represent th
former and the mnemonic MOV for the latter.)

There are also compare instructions, which compare two registers (=, ≠, <, >,
≤, ≥). If the condition is true, these instructions place a 1 in the destination re
ter (to represent true); otherwise they place the value 0. Because these ope
“set” a register, they are called set-equal, set-not-equal, set-less-than, and
There are also immediate forms of these compares. Figure 2.23 gives som
amples of the arithmetic/logical instructions.

Control is handled through a set of jumps and a set of branches. The four
instructions are differentiated by the two ways to specify the destination add
and by whether or not a link is made. Two jumps use a 26-bit signed offset a

Example instruction Instruction name Meaning

ADD R1,R2,R3 Add Regs[R1] ←Regs[R2]+Regs[R3]

ADDI R1,R2,#3 Add immediate Regs[R1] ←Regs[R2]+3

LHI R1,#42 Load high immediate Regs[R1] ←42##0 16

SLLI R1,R2,#5 Shift left logical
immediate

Regs[R1] ←Regs[R2]<<5

SLT R1,R2,R3 Set less than if (Regs[R2]<Regs[R3])
Regs[R1] ←1 else Regs[R1] ←0

FIGURE 2.23 Examples of arithmetic/logical instructions on DLX, both with and without im-
mediates.

102 Chapter 2 Instruction Set Principles and Examples

 de-
gister
jump,
turn

 in-
r may
 spec-
h is

anch
 reg-

ate
pera-

tions
 an
uires
int
t and

fix
to the program counter (of the instruction sequentially following the jump) to
termine the destination address; the other two jump instructions specify a re
that contains the destination address. There are two flavors of jumps: plain
and jump and link (used for procedure calls). The latter places the re
address—the address of the next sequential instruction—in R31.

All branches are conditional. The branch condition is specified by the
struction, which may test the register source for zero or nonzero; the registe
contain a data value or the result of a compare. The branch target address is
ified with a 16-bit signed offset that is added to the program counter, whic
pointing to the next sequential instruction. Figure 2.24 gives some typical br
and jump instructions. There is also a branch to test the floating-point status
ister for floating-point conditional branches, described below.

Floating-point instructions manipulate the floating-point registers and indic
whether the operation to be performed is single or double precision. The o
tions MOVF and MOVD copy a single-precision (MOVF) or double-precision (MOVD)
floating-point register to another register of the same type. The opera
MOVFP2I and MOVI2FP move data between a single floating-point register and
integer register; moving a double-precision value to two integer registers req
two instructions. Integer multiply and divide that work on 32-bit floating-po
registers are also provided, as are conversions from integer to floating poin
vice versa.

The floating-point operations are add, subtract, multiply, and divide; a sufD

is used for double precision and a suffix F is used for single precision (e.g., ADDD,
ADDF, SUBD, SUBF, MULTD, MULTF, DIVD, DIVF). Floating-point compares set a

Example instruction Instruction name Meaning

J name Jump PC←name; ((PC+4)–2 25) ≤ name <

((PC+4)+2 25)

JAL name Jump and link Regs[R31] ←PC+4; PC ←name;

((PC+4)–2 25) ≤ name < ((PC+4)+2 25)

JALR R2 Jump and link register Regs[R31] ←PC+4; PC ←Regs[R2]

JR R3 Jump register PC←Regs[R3]

BEQZ R4,name Branch equal zero if (Regs[R4]==0) PC ←name;

((PC+4)–2 15) ≤ name < ((PC+4)+2 15)

BNEZ R4,name Branch not equal zero if (Regs[R4]!=0) PC ←name;

((PC+4)–2 15) ≤ name < ((PC+4)+2 15)

FIGURE 2.24 Typical control-flow instructions in DLX. All control instructions, except jumps to an address in a register,
are PC-relative. If the register operand is R0, BEQZ will always branch, but the compiler will usually prefer to use a jump with
a longer offset over this “unconditional branch.”

2.8 Putting It All Together: The DLX Architecture 103

ir of
nt

nit
ntrol
nte-
oat-

ely
er-

ive
f in-

 2.27
 feel-
t are

 ad-
o exe-
ance
n of

I or

 the
eate
ilers.
hould
ll in-
 case
 the
ssing
ini-
four
1000
e was
bit in the special floating-point status register that can be tested with a pa
branches: BFPT and BFPF, branch floating-point true and branch floating-poi
false.

One slightly unusual DLX characteristic is that it uses the floating-point u
for integer multiplies and divides. As we shall see in Chapters 3 and 4, the co
for the slower floating-point operations is much more complicated than for i
ger addition and subtraction. Since the floating-point unit already handles fl
ing point multiply and divide, it is not much harder for it to perform the relativ
slow operations of integer multiply and divide. Hence DLX requires that op
ands to be multiplied or divided be placed in floating-point registers.

 Figure 2.25 contains a list of all DLX operations and their meaning. To g
an idea which instructions are popular, Figure 2.26 shows the frequency o
structions and instruction classes for five SPECint92 programs and Figure
shows the same data for five SPECfp92 programs. To give a more intuitive
ing, Figures 2.28 and 2.29 show the data graphically for all instructions tha
responsible on average for more than 1% of the instructions executed.

Effectiveness of DLX

It would seem that an architecture with simple instruction formats, simple
dress modes, and simple operations would be slow, in part because it has t
cute more instructions than more sophisticated designs. The perform
equation from the last chapter reminds us that execution time is a functio
more than just instruction count:

To see whether reduction in instruction count is offset by increases in CP
clock cycle time, we need to compare DLX to a sophisticated alternative.

One example of a sophisticated instruction set architecture is the VAX. In
mid 1970s, when the VAX was designed, the prevailing philosophy was to cr
instruction sets that were close to programming languages to simplify comp
For example, because programming languages had loops, instruction sets s
have loop instructions, not just simple conditional branches; they needed ca
structions that saved registers, not just simple jump and links; they needed
instructions, not just jump indirect; and so on. Following similar arguments,
VAX provided a large set of addressing modes and made sure that all addre
modes worked with all operations. Another prevailing philosophy was to m
mize code size. Recall that DRAMs have grown in capacity by a factor of
every three years; thus in the mid 1970s DRAM chips contained less than 1/
the capacity of today’s DRAMs, so code space was also critical. Code spac

CPU time Instruction count CPI × Clock cycle time × =

104 Chapter 2 Instruction Set Principles and Examples

ial

rations

t

Instruction type/opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or spec
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB,LBU,SB

Load byte, load byte unsigned, store byte

LH,LHU,SH

Load half word, load half word unsigned, store half word

LW,SW

Load word, store word (to/from integer registers)

LF,LD,SF,SD

Load SP float, load DP float, store SP float, store DP float

MOVI2S, MOVS2I

Move from/to GPR to/from a special register

MOVF, MOVD Copy one FP register or a DP pair to another register or pair

MOVFP2I,MOVI2FP Move 32 bits from/to FP registers to/from integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

ADD,ADDI,ADDU, ADDUI Add, add immediate (all immediates are 16 bits); signed and unsigned

SUB,SUBI,SUBU, SUBUI Subtract, subtract immediate; signed and unsigned

MULT,MULTU,DIV,DIVU Multiply and divide, signed and unsigned; operands must be FP registers; all ope
take and yield 32-bit values

AND,ANDI And, and immediate

OR,ORI,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate

LHI Load high immediate—loads upper half of register with immediate

SLL, SRL, SRA, SLLI,
SRLI, SRAI

Shifts: both immediate (S__I) and variable form (S__) ; shifts are shift left logical, righ
logical, right arithmetic

S__,S__I Set conditional: “__” may be LT,GT,LE,GE,EQ,NE

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

BFPT,BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC+4

J, JR Jumps: 26-bit offset from PC+4 (J) or target in register (JR)

JAL, JALR Jump and link: save PC+4 in R31, target is PC-relative (JAL) or a register (JALR)

TRAP Transfer to operating system at a vectored address

RFE Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADDD,ADDF Add DP, SP numbers

SUBD,SUBF Subtract DP, SP numbers

MULTD,MULTF Multiply DP, SP floating point

DIVD,DIVF Divide DP, SP floating point

CVTF2D, CVTF2I,
CVTD2F, CVTD2I,
CVTI2F, CVTI2D

Convert instructions: CVTx2y converts from type x to type y, where x and y are I
(integer), D (double precision), or F (single precision). Both operands are FPRs.

__D, __F DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE ; sets bit in FP status register

FIGURE 2.25 Complete list of the instructions in DLX. The formats of these instructions are shown in Figure 2.21.
SP = single precision; DP = double precision. This list can also be found on the page preceding the back inside cover.

2.8 Putting It All Together: The DLX Architecture 105

ad-
ntrast,
ittle

 of
a-

ing
de-emphasized in fixed-length instruction sets like DLX. For example, DLX
dress fields always use 16 bits, even when the address is very small. In co
the VAX allows instructions to be a variable number of bytes, so there is l
wasted space in address fields.

Designers of VAX machines later performed a quantitative comparison
VAX and a DLX-like machine for implementations with comparable organiz
tions. Their choices were the VAX 8700 and the MIPS M2000. The differ

Instruction compress eqntott espresso gcc (cc1) li
Integer
average

load 19.8% 30.6% 20.9% 22.8% 31.3% 26%

store 5.6% 0.6% 5.1% 14.3% 16.7% 9%

add 14.4% 8.5% 23.8% 14.6% 11.1% 14%

sub 1.8% 0.3% 0.5% 0%

mul 0.1% 0%

div 0%

compare 15.4% 26.5% 8.3% 12.4% 5.4% 14%

load imm 8.1% 1.5% 1.3% 6.8% 2.4% 4%

cond branch 17.4% 24.0% 15.0% 11.5% 14.6% 17%

jump 1.5% 0.9% 0.5% 1.3% 1.8% 1%

call 0.1% 0.5% 0.4% 1.1% 3.1% 1%

return, jmp ind 0.1% 0.5% 0.5% 1.5% 3.5% 1%

shift 6.5% 0.3% 7.0% 6.2% 0.7% 4%

and 2.1% 0.1% 9.4% 1.6% 2.1% 3%

or 6.0% 5.5% 4.8% 4.2% 6.2% 5%

other (xor, not) 1.0% 2.0% 0.5% 0.1% 1%

load FP 0%

store FP 0%

add FP 0%

sub FP 0%

mul FP 0%

div FP 0%

compare FP 0%

mov reg-reg FP 0%

other FP 0%

FIGURE 2.26 DLX instruction mix for five SPECint92 programs. Note that integer register-register move instructions
are included in the add instruction. Blank entries have the value 0.0%.

106 Chapter 2 Instruction Set Principles and Examples

als,
erful
oals
 and
in-
 large

tio of
ations
goals for VAX and MIPS have led to very different architectures. The VAX go
simple compilers and code density, led to powerful addressing modes, pow
instructions, efficient instruction encoding, and few registers. The MIPS g
were high performance via pipelining, ease of hardware implementation,
compatibility with highly optimizing compilers. These goals led to simple
structions, simple addressing modes, fixed-length instruction formats, and a
number of registers.

Figure 2.30 shows the ratio of the number of instructions executed, the ra
CPIs, and the ratio of performance measured in clock cycles. Since the organiz

Instruction doduc ear hydro2d mdljdp2 su2cor FP average

load 1.4% 0.2% 0.1% 1.1% 3.6% 1%

store 1.3% 0.1% 0.1% 1.3% 1%

add 13.6% 13.6% 10.9% 4.7% 9.7% 11%

sub 0.3% 0.2% 0.7% 0%

mul 0%

div 0%

compare 3.2% 3.1% 1.2% 0.3% 1.3% 2%

load imm 2.2% 0.2% 2.2% 0.9% 1%

cond branch 8.0% 10.1% 11.7% 9.3% 2.6% 8%

jump 0.9% 0.4% 0.4% 0.1% 0%

call 0.5% 1.9% 0.3% 1%

return, jmp ind 0.6% 1.9% 0.3% 1%

shift 2.0% 0.2% 2.4% 1.3% 2.3% 2%

and 0.4% 0.1% 0.3% 0%

or 0.2% 0.1% 0.1% 0.1% 0%

other (xor, not) 0%

load FP 23.3% 19.8% 24.1% 25.9% 21.6% 23%

store FP 5.7% 11.4% 9.9% 10.0% 9.8% 9%

add FP 8.8% 7.3% 3.6% 8.5% 12.4% 8%

sub FP 3.8% 3.2% 7.9% 10.4% 5.9% 6%

mul FP 12.0% 9.6% 9.4% 13.9% 21.6% 13%

div FP 2.3% 1.6% 0.9% 0.7% 1%

compare FP 4.2% 6.4% 10.4% 9.3% 0.8% 6%

mov reg-reg FP 2.1% 1.8% 5.2% 0.9% 1.9% 2%

other FP 2.4% 8.4% 0.2% 0.2% 1.2% 2%

FIGURE 2.27 DLX instruction mix for five programs from SPECfp92 . Note that integer register-register move instruc-
tions are included in the add instruction. Blank entries have the value 0.0%.

2.8 Putting It All Together: The DLX Architecture 107
FIGURE 2.28 Graphical display of instructions executed of the five programs from
SPECint92 in Figure 2.26. These instruction classes collectively are responsible on average
for 92% of instructions executed.

FIGURE 2.29 Graphical display of instructions executed of the five programs from
SPECfp92 in Figure 2.27. These instruction classes collectively are responsible on average
for just under 90% of instructions executed.

load int

conditional branch

add int

compare int

store int

or

shift

and

26%

16%

0% 5% 10% 15% 20% 25%

14%

13%

9%

5%

4%

3%

eqntott espresso gcc licompress

Total dynamic count

load FP

mul FP

add int

store FP

conditional branch

add FP

sub FP

compare FP

23%

13%

0% 5% 10% 15% 20% 25%

11%

9%

8%

8%

6%

6%

ear hydro2d mdljdp2 su2cordoduc

mov reg FP 2%

shift 2%

Total dynamic count

108 Chapter 2 Instruction Set Principles and Examples

 about
es

s the
 build
n the
chine

n this
were similar, clock cycle times were assumed to be the same. MIPS executes
twice as many instructions as the VAX, while the CPI for the VAX is about six tim
larger than that for the MIPS. Hence the MIPS M2000 has almost three time
performance of the VAX 8700. Furthermore, much less hardware is needed to
the MIPS CPU than the VAX CPU. This cost/performance gap is the reaso
company that used to make the VAX has dropped it and is now making a ma
similar to DLX.

Time and again architects have tripped on common, but erroneous, beliefs. I
section we look at a few of them.

FIGURE 2.30 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using
SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the VAX
is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from Bhandarkar and
Clark [1991].)

2.9 Fallacies and Pitfalls

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

li

eq
nt

ot
t

es
pr

es
so

do
du

c

to
m

ca
tv

fp
pp

p

na
sa

7

m
at

rix
sp

ice

Performance
ratio

Instructions
executed ratio

CPI ratio

SPEC 89 benchmarks

MIPS/VAX

2.9 Fallacies and Pitfalls 109

d

have
ity.
se, or
forts

ring
 what

ner

the
gain,
is-
-
d

 men-
this

ion.

k point-

ver-
kage
an the
k-
ts to
seful,

are too
Pitfall: Designing a “high-level” instruction set feature specifically oriente
to supporting a high-level language structure.

Attempts to incorporate high-level language features in the instruction set
led architects to provide powerful instructions with a wide range of flexibil
But often these instructions do more work than is required in the frequent ca
they don’t exactly match the requirements of the language. Many such ef
have been aimed at eliminating what in the 1970s was called the semantic gap.
Although the idea is to supplement the instruction set with additions that b
the hardware up to the level of the language, the additions can generate
Wulf [1981] has called a semantic clash:

... by giving too much semantic content to the instruction, the machine desig
made it possible to use the instruction only in limited contexts. [p. 43]

More often the instructions are simply overkill—they are too general for
most frequent case, resulting in unneeded work and a slower instruction. A
the VAX CALLS is a good example. CALLS uses a callee-save strategy (the reg
ters to be saved are specified by the callee) but the saving is done by the call in
struction in the caller. The CALLS instruction begins with the arguments pushe
on the stack, and then takes the following steps:

1. Align the stack if needed.

2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as
tioned in section 2.7). The mask is kept in the called procedure’s code—
permits callee save to be done by the caller even with separate compilat

4. Push the return address on the stack, then push the top and base of stac
ers for the activation record.

5. Clear the condition codes, which sets the trap enables to a known state.

6. Push a word for status information and a zero word on the stack.

7. Update the two stack pointers.

8. Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of o
head. Most procedures know their argument counts, and a much faster lin
convention can be established using registers to pass arguments rather th
stack. Furthermore, the CALLS instruction forces two registers to be used for lin
age, while many languages require only one linkage register. Many attemp
support procedure call and activation stack management have failed to be u
either because they do not match the language needs or because they
general and hence too expensive to use.

110 Chapter 2 Instruction Set Principles and Examples

dure.

 link-
n by

com-

hat
thetic
 that
ple,
pro-
The
plica-

ators
have
The VAX designers provided a simpler instruction, JSB, that is much faster
since it only pushes the return PC on the stack and jumps to the proce
However, most VAX compilers use the more costly CALLS instructions. The call
instructions were included in the architecture to standardize the procedure
age convention. Other machines have standardized their calling conventio
agreement among compiler writers and without requiring the overhead of a
plex, very general-procedure call instruction.

Fallacy: There is such a thing as a typical program.

Many people would like to believe that there is a single “typical” program t
could be used to design an optimal instruction set. For example, see the syn
benchmarks discussed in Chapter 1. The data in this chapter clearly show
programs can vary significantly in how they use an instruction set. For exam
Figure 2.31 shows the mix of data transfer sizes for four of the SPEC92
grams: It would be hard to say what is typical from these four programs.
variations are even larger on an instruction set that supports a class of ap
tions, such as decimal instructions, that are unused by other applications.

Fallacy: An architecture with flaws cannot be successful.

The 80x86 provides a dramatic example: The architecture is one only its cre
could love (see Appendix D). Succeeding generations of Intel engineers

FIGURE 2.31 Data reference size of four programs from SPEC92. Although you can cal-
culate an average size, it would be hard to claim the average is typical of programs.

0% 50% 100%

0%

4%

19%

87%

0%
1%

100%
0%

78%
12%

0%

0%

Word

Half word

Byte

0%
0%

100%

Double word
0%

Frequency of reference by size

ear eqntott compresshydro2d

2.10 Concluding Remarks 111

x86.
aging;
s use
very-

ifficul-
 in the

ard-
ly to
 made
d the
f de-
ally

blem
chi-

ware
itects
three
the
 good
piler
to re-
with
k of
archi-
rge
rchi-

d em-
based

er, in

s, ex-
ix C
its.
tried to correct unpopular architectural decisions made in designing the 80
For example, the 80x86 supports segmentation, whereas all others picked p
the 80x86 uses extended accumulators for integer data, but other machine
general-purpose registers; and it uses a stack for floating-point data when e
one else abandoned execution stacks long before. Despite these major d
ties, the 80x86 architecture—because of its selection as the microprocessor
IBM PC—has been enormously successful.

Fallacy: You can design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of h
ware and software technologies. Over time those technologies are like
change, and decisions that may have been correct at the time they were
look like mistakes. For example, in 1975 the VAX designers overemphasize
importance of code-size efficiency, underestimating how important ease o
coding and pipelining would be 10 years later. Almost all architectures eventu
succumb to the lack of sufficient address space. However, avoiding this pro
in the long run would probably mean compromising the efficiency of the ar
tecture in the short run.

The earliest architectures were limited in their instruction sets by the hard
technology of that time. As soon as the hardware technology permitted, arch
began looking for ways to support high-level languages. This search led to
distinct periods of thought about how to support programs efficiently. In
1960s, stack architectures became popular. They were viewed as being a
match for high-level languages—and they probably were, given the com
technology of the day. In the 1970s, the main concern of architects was how
duce software costs. This concern was met primarily by replacing software
hardware, or by providing high-level architectures that could simplify the tas
software designers. The result was both the high-level-language computer
tecture movement and powerful architectures like the VAX, which has a la
number of addressing modes, multiple data types, and a highly orthogonal a
tecture. In the 1980s, more sophisticated compiler technology and a renewe
phasis on machine performance saw a return to simpler architectures,
mainly on the load-store style of machine.

Today, there is widespread agreement on instruction set design. Howev
the next decade we expect to see change in the following areas:

■ The 32-bit address instruction sets are being extended to 64-bit addresse
panding the width of the registers (among other things) to 64 bits. Append
gives three examples of architectures that have gone from 32 bits to 64 b

2.10 Concluding Remarks

112 Chapter 2 Instruction Set Principles and Examples

nies
y im-

 per-
acing
ndi-

e of
struc-
stiga-
ing

nce,
ruple

rchi-
pha-

1950s
pected
 of the
va-
 text-
e to

lude
 the
tudy.
lk of
ted in
com-
 the
tion

h a
■ Given the popularity of software for the 80x86 architecture, many compa
are looking to see if changes to load-store instruction sets can significantl
prove performance when emulating the 80x86 architecture.

■ In the next two chapters we will see that conditional branches can limit the
formance of aggressive computer designs. Hence there is interest in repl
conditional branches with conditional completion of operations, such as co
tional move (see Chapter 4).

■ Chapter 5 explains the increasing role of memory hierarchy in performanc
machines, with a cache miss on some machines taking almost as many in
tion times as page faults took on earlier machines. Hence there are inve
tions into hiding the cost of cache misses by prefetching and by allow
caches and CPUs to proceed while servicing a miss (see Chapter 5).

■ Appendix A describes new operations to enhance floating-point performa
such as operations that perform a multiply and an add. Support for quad
precision, at least for data transfer, may also be coming down the line.

Between 1970 and 1985 many thought the primary job of the computer a
tect was the design of instruction sets. As a result, textbooks of that era em
size instruction set design, much as computer architecture textbooks of the
and 1960s emphasized computer arithmetic. The educated architect was ex
to have strong opinions about the strengths and especially the weaknesses
popular machines. The importance of binary compatibility in quashing inno
tions in instruction set design was unappreciated by many researchers and
book writers, giving the impression that many architects would get a chanc
design an instruction set.

The definition of computer architecture today has been expanded to inc
design and evaluation of the full computer system—not just the definition of
instruction set—and hence there are plenty of topics for the architect to s
(You may have guessed this the first time you lifted this book.) Hence the bu
this book is on design of computers versus instruction sets. Readers interes
instruction set architecture may be satisfied by the appendices: Appendix C
pares four popular load-store machines with DLX. Appendix D describes
most widely used instruction set, the Intel 80x86, and compares instruc
counts for it with that of DLX for several programs.

One’s eyebrows should rise whenever a future architecture is developed wit
stack- or register-oriented instruction set. [p. 20]

Meyers [1978]

2.11 Historical Perspective and References

2.11 Historical Perspective and References 113

a-
chine
. The
td. in
g zero.

t ma-
rton

scribed
OL,
level
 sup-
 and
5000
est of
nsity,
orig-
P-

three

per-

erfor-

 Intel
xcept
.
l,
rtion

 seem
lead-
he
e 360
 de-

der-
The earliest computers, including the UNIVAC I, the EDSAC, and the IAS m
chines, were accumulator-based machines. The simplicity of this type of ma
made it the natural choice when hardware resources were very constrained
first general-purpose register machine was the Pegasus, built by Ferranti, L
1956. The Pegasus had eight general-purpose registers, with R0 always bein
Block transfers loaded the eight registers from the drum.

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the firs
chine to seriously consider software and hardware-software trade-offs. Ba
and the designers at Burroughs made the B5000 a stack architecture (as de
in Barton [1961]). Designed to support high-level languages such as ALG
this stack architecture used an operating system (MCP) written in a high-
language. The B5000 was also the first machine from a U.S. manufacturer to
port virtual memory. The B6500, introduced in 1968 (and discussed in Hauck
Dent [1968]), added hardware-managed activation records. In both the B
and B6500, the top two elements of the stack were kept in the CPU and the r
the stack was kept in memory. The stack architecture yielded good code de
but only provided two high-speed storage locations. The authors of both the
inal IBM 360 paper [Amdahl, Blaauw, and Brooks 1964] and the original PD
11 paper [Bell et al. 1970] argue against the stack organization. They cite
major points in their arguments against stacks:

1. Performance is derived from fast registers, not the way they are used.

2. The stack organization is too limiting and requires many swap and copy o
ations.

3. The stack has a bottom, and when placed in slower memory there is a p
mance loss.

Stack-based machines fell out of favor in the late 1970s and, except for the
80x86 floating-point architecture, essentially disappeared. For example, e
for the 80x86, none of the machines listed in the SPEC reports uses a stack

The term computer architecture was coined by IBM in the early 1960s. Amdah
Blaauw, and Brooks [1964] used the term to refer to the programmer-visible po
of the IBM 360 instruction set. They believed that a family of machines of the same
architecture should be able to run the same software. Although this idea may
obvious to us today, it was quite novel at that time. IBM, even though it was the
ing company in the industry, had five different architectures before the 360. Thus, t
notion of a company standardizing on a single architecture was a radical one. Th
designers hoped that six different divisions of IBM could be brought together by
fining a common architecture. Their definition of architecture was

... the structure of a computer that a machine language programmer must un
stand to write a correct (timing independent) program for that machine.

114 Chapter 2 Instruction Set Principles and Examples

old,
ple-

yte
o had

. As
e first
store
ify ar-
tec-
 by
 the

 were
s and
g to

nes,
Many
erful,
s of
s are
mind
posed
these
ctly to

C re-
d to
ed

ture
vel-
n-

 large

one
stone
sys-
 pa-
sis of
an-
f the
mise
The term “machine language programmer” meant that compatibility would h
even in assembly language, while “timing independent” allowed different im
mentations.

The IBM 360 was the first machine to sell in large quantities with both b
addressing using 8-bit bytes and general-purpose registers. The 360 als
register-memory and limited memory-memory instructions.

In 1964, Control Data delivered the first supercomputer, the CDC 6600
Thornton [1964] discusses, he, Cray, and the other 6600 designers were th
to explore pipelining in depth. The 6600 was the first general-purpose, load-
machine. In the 1960s, the designers of the 6600 realized the need to simpl
chitecture for the sake of efficient pipelining. This interaction between archi
tural simplicity and implementation was largely neglected during the 1970s
microprocessor and minicomputer designers, but it was brought back in
1980s.

In the late 1960s and early 1970s, people realized that software costs
growing faster than hardware costs. McKeeman [1967] argued that compiler
operating systems were getting too big and too complex and taking too lon
develop. Because of inferior compilers and the memory limitations of machi
most systems programs at the time were still written in assembly language.
researchers proposed alleviating the software crisis by creating more pow
software-oriented architectures. Tanenbaum [1978] studied the propertie
high-level languages. Like other researchers, he found that most program
simple. He then argued that architectures should be designed with this in
and should optimize program size and ease of compilation. Tanenbaum pro
a stack machine with frequency-encoded instruction formats to accomplish
goals. However, as we have observed, program size does not translate dire
cost/performance, and stack machines faded out shortly after this work.

Strecker’s article [1978] discusses how he and the other architects at DE
sponded to this by designing the VAX architecture. The VAX was designe
simplify compilation of high-level languages. Compiler writers had complain
about the lack of complete orthogonality in the PDP-11. The VAX architec
was designed to be highly orthogonal and to allow the mapping of a high-le
language statement into a single VAX instruction. Additionally, the VAX desig
ers tried to optimize code size because compiled programs were often too
for available memories.

The VAX-11/780 was the first machine announced in the VAX series. It is
of the most successful and heavily studied machines ever built. The corner
of DEC’s strategy was a single architecture, VAX, running a single operating
tem, VMS. This strategy worked well for over 10 years. The large number of
pers reporting instruction mixes, implementation measurements, and analy
the VAX make it an ideal case study [Wiecek 1982; Clark and Levy 1982]. Bh
darkar and Clark [1991] give a quantitative analysis of the disadvantages o
VAX versus a RISC machine, essentially a technical explanation for the de
of the VAX.

2.11 Historical Perspective and References 115

-
-lev-
the

ing
a his-

ory
prob-
igh-

ware
om-

way
rson
itec-
paper
ed in-
r ar-

nly
hines
of in-
 of

ives
pro-
 have
dvan-
 tech-

 be-
hile
ke is
kert-

de-
ental
t and

as to
They
 not
ting
keley
While the VAX was being designed, a more radical approach, called high-
level-language computer architecture (HLLCA), was being advocated in the re
search community. This movement aimed to eliminate the gap between high
el languages and computer hardware—what Gagliardi [1973] called
“semantic gap”—by bringing the hardware “up to” the level of the programm
language. Meyers [1982] provides a good summary of the arguments and
tory of high-level-language computer architecture projects.

HLLCA never had a significant commercial impact. The increase in mem
size on machines and the use of virtual memory eliminated the code-size
lems arising from high-level languages and operating systems written in h
level languages. The combination of simpler architectures together with soft
offered greater performance and more flexibility at lower cost and lower c
plexity.

In the early 1980s, the direction of computer architecture began to swing a
from providing high-level hardware support for languages. Ditzel and Patte
[1980] analyzed the difficulties encountered by the high-level-language arch
tures and argued that the answer lay in simpler architectures. In another
[Patterson and Ditzel 1980], these authors first discussed the idea of reduc
struction set computers (RISC) and presented the argument for simple
chitectures. Their proposal was rebutted by Clark and Strecker [1980].

The simple load-store machines from which DLX is derived are commo
called RISC architectures. The roots of RISC architectures go back to mac
like the 6600, where Thornton, Cray, and others recognized the importance
struction set simplicity in building a fast machine. Cray continued his tradition
keeping machines simple in the CRAY-1. However, DLX and its close relat
are built primarily on the work of three research projects: the Berkeley RISC
cessor, the IBM 801, and the Stanford MIPS processor. These architectures
attracted enormous industrial interest because of claims of a performance a
tage of anywhere from two to five times over other machines using the same
nology.

Begun in 1975, the IBM project was the first to start but was the last to
come public. The IBM machine was designed as an ECL minicomputer, w
the university projects were both MOS-based microprocessors. John Coc
considered to be the father of the 801 design. He received both the Ec
Mauchly and Turing awards in recognition of his contribution. Radin [1982]
scribes the highlights of the 801 architecture. The 801 was an experim
project that was never designed to be a product. In fact, to keep down cos
complexity, the machine was built with only 24-bit registers.

In 1980, Patterson and his colleagues at Berkeley began the project that w
give this architectural approach its name (see Patterson and Ditzel [1980]).
built two machines called RISC-I and RISC-II. Because the IBM project was
widely known or discussed, the role played by the Berkeley group in promo
the RISC approach was critical to the acceptance of the technology. The Ber

116 Chapter 2 Instruction Set Principles and Examples

d by

on of
dul-

 in
hine
es
 em-
s and
chine
er is-

van-
 ma-
. A
was
erfor-

early
 ma-

 than

n the
t al.

6] is
xist-
 de-
ead,
ted in
990,
per-
liver-

keley
rPC
eral

 mi-
VAX,
ay it
 an-
rchi-
group went on to build RISC machines targeted toward Smalltalk, describe
Ungar et al. [1984], and LISP, described by Taylor et al. [1986].

In 1981, Hennessy and his colleagues at Stanford published a descripti
the Stanford MIPS machine. Efficient pipelining and compiler-assisted sche
ing of the pipeline were both key aspects of the original MIPS design.

These early RISC machines—the 801, RISC-II, and MIPS—had much
common. Both university projects were interested in designing a simple mac
that could be built in VLSI within the university environment. All three machin
used a simple load-store architecture, fixed-format 32-bit instructions, and
phasized efficient pipelining. Patterson [1985] describes the three machine
the basic design principles that have come to characterize what a RISC ma
is. Hennessy [1984] provides another view of the same ideas, as well as oth
sues in VLSI processor design.

In 1985, Hennessy published an explanation of the RISC performance ad
tage and traced its roots to a substantially lower CPI—under 2 for a RISC
chine and over 10 for a VAX-11/780 (though not with identical workloads)
paper by Emer and Clark [1984] characterizing VAX-11/780 performance
instrumental in helping the RISC researchers understand the source of the p
mance advantage seen by their machines.

Since the university projects finished up, in the 1983–84 time frame, the tech-
nology has been widely embraced by industry. Many manufacturers of the
computers (those made before 1986) claimed that their products were RISC
chines. However, these claims were often born more of marketing ambition
of engineering reality.

In 1986, the computer industry began to announce processors based o
technology explored by the three RISC research projects. Moussouris e
[1986] describe the MIPS R2000 integer processor, while Kane’s book [198
a complete description of the architecture. Hewlett-Packard converted their e
ing minicomputer line to RISC architectures; the HP Precision Architecture is
scribed by Lee [1989]. IBM never directly turned the 801 into a product. Inst
the ideas were adopted for a new, low-end architecture that was incorpora
the IBM RT-PC and described in a collection of papers [Waters 1986]. In 1
IBM announced a new RISC architecture (the RS 6000), which is the first su
scalar RISC machine (see Chapter 4). In 1987, Sun Microsystems began de
ing machines based on the SPARC architecture, a derivative of the Ber
RISC-II machine; SPARC is described in Garner et al. [1988]. The Powe
joined the forces of Apple, IBM, and Motorola. Appendix C summarizes sev
RISC architectures.

Prior to the RISC architecture movement, the major trend had been highly
crocoded architectures aimed at reducing the semantic gap. DEC, with the
and Intel, with the iAPX 432, were among the leaders in this approach. Tod
is hard to find a computer company without a RISC product. With the 1994
nouncement that Hewlett Packard and Intel will eventually have a common a
tecture, the end of the 1970s architectures draws near.

2.11 Historical Perspective and References 117

C

re-

11/

set

i-

1/

are,”

,

ure,”
References

AMDAHL , G. M., G. A. BLAAUW , AND F. P. BROOKS, JR. [1964]. “Architecture of the IBM System
360,” IBM J. Research and Development 8:2 (April), 87–101.

BARTON, R. S. [1961]. “A new approach to the functional design of a computer,” Proc. Western Joint
Computer Conf., 393–396.

BELL, G., R. CADY, H. MCFARLAND, B. DELAGI, J. O’LAUGHLIN, R. NOONAN, AND W. WULF

[1970]. “A new architecture for mini-computers: The DEC PDP-11,” Proc. AFIPS SJCC, 657–675.

BHANDARKAR, D., AND D. W. CLARK [1991]. “Performance from architecture: Comparing a RIS
and a CISC with similar hardware organizations,” Proc. Fourth Conf. on Architectural Support for
Programming Languages and Operating Systems, IEEE/ACM (April), Palo Alto, Calif., 310–19.

CHOW, F. C. [1983]. A Portable Machine-Independent Global Optimizer—Design and Measu
ments, Ph.D. Thesis, Stanford Univ. (December).

CLARK, D. AND H. LEVY [1982]. “Measurement and analysis of instruction set use in the VAX-
780,” Proc. Ninth Symposium on Computer Architecture (April), Austin, Tex., 9–17.

CLARK, D. AND W. D. STRECKER [1980]. “Comments on ‘the case for the reduced instruction
computer’,” Computer Architecture News 8:6 (October), 34–38.

CRAWFORD, J. AND P. GELSINGER [1988]. Programming the 80386, Sybex Books, Alameda, Calif.

DITZEL, D. R. AND D. A. PATTERSON [1980]. “Retrospective on high-level language computer arch
tecture,” in Proc. Seventh Annual Symposium on Computer Architecture, La Baule, France (June),
97–104.

EMER, J. S. AND D. W. CLARK [1984]. “A characterization of processor performance in the VAX-1
780,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301–310.

GAGLIARDI , U. O. [1973]. “Report of workshop 4–Software-related advances in computer hardw
Proc. Symposium on the High Cost of Software, Menlo Park, Calif., 99–120.

GARNER, R., A. AGARWAL, F. BRIGGS, E. BROWN, D. HOUGH, B. JOY, S. KLEIMAN , S. MUNCHNIK,
M. NAMJOO, D. PATTERSON, J. PENDLETON, AND R. TUCK [1988]. “Scalable processor architecture
(SPARC),” COMPCON, IEEE (March), San Francisco, 278–283.

HAUCK, E. A., AND B. A. DENT [1968]. “Burroughs’ B6500/B7500 stack mechanism,” Proc. AFIPS
SJCC, 245–251.

HENNESSY, J. [1984]. “VLSI processor architecture,” IEEE Trans. on Computers C-33:11 (Decem-
ber), 1221–1246.

HENNESSY, J. [1985]. “VLSI RISC processors,” VLSI Systems Design VI:10 (October), 22–32.

HENNESSY, J., N. JOUPPI, F. BASKETT, AND J. GILL [1981]. “MIPS: A VLSI processor architecture,”
Proc. CMU Conf. on VLSI Systems and Computations (October), Computer Science Press
Rockville, Md.

KANE, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J.

LEE, R. [1989]. “Precision architecture,” Computer 22:1 (January), 78–91.

LEVY, H. AND R. ECKHOUSE [1989]. Computer Programming and Architecture: The VAX, Digital
Press, Boston.

LUNDE, A. [1977]. “Empirical evaluation of some features of instruction set processor architect
Comm. ACM 20:3 (March), 143–152.

MCKEEMAN, W. M. [1967]. “Language directed computer design,” Proc. 1967 Fall Joint Computer
Conf., Washington, D.C., 413–417.

MEYERS, G. J. [1978]. “The evaluation of expressions in a storage-to-storage architecture,” Computer
Architecture News 7:3 (October), 20–23.

118 Chapter 2 Instruction Set Principles and Examples

r,”

-

,”

tems

rchi-
s for
 refer-
equal
 the
t.

nch-
struc-

ding

4-bit
of
r of
MEYERS, G. J. [1982]. Advances in Computer Architecture, 2nd ed., Wiley, New York.

MOUSSOURIS, J., L. CRUDELE, D. FREITAS, C. HANSEN, E. HUDSON, S. PRZYBYLSKI, T. RIORDAN,
AND C. ROWEN [1986]. “A CMOS RISC processor with integrated system functions,” Proc.
COMPCON, IEEE (March), San Francisco, 191.

PATTERSON, D. [1985]. “Reduced instruction set computers,” Comm. ACM 28:1 (January), 8–21.

PATTERSON, D. A. AND D. R. DITZEL [1980]. “The case for the reduced instruction set compute
Computer Architecture News 8:6 (October), 25–33.

RADIN, G. [1982]. “The 801 minicomputer,” Proc. Symposium Architectural Support for Program
ming Languages and Operating Systems (March), Palo Alto, Calif., 39–47.

STRECKER, W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11 family,” Proc.
AFIPS National Computer Conf. 47, 967–980.

TANENBAUM, A. S. [1978]. “Implications of structured programming for machine architecture
Comm. ACM 21:3 (March), 237–246.

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON, AND B. ZORN [1986]. “Evaluation of the SPUR
LISP architecture,” Proc. 13th Symposium on Computer Architecture (June), Tokyo.

THORNTON, J. E. [1964]. “Parallel operation in Control Data 6600,” Proc. AFIPS Fall Joint Com-
puter Conf. 26, part 2, 33–40.

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. “Architecture of SOAR:
Smalltalk on a RISC,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich.,
188–197.

WAKERLY, J. [1989]. Microcomputer Architecture and Programming, J. Wiley, New York.

WATERS, F., ED. [1986]. IBM RT Personal Computer Technology, IBM, Austin, Tex., SA 23-1057.

WIECEK, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler execution,” Proc.
Symposium on Architectural Support for Programming Languages and Operating Sys
(March), IEEE/ACM, Palo Alto, Calif., 177–184.

WULF, W. [1981]. “Compilers and computer architecture,” Computer 14:7 (July), 41–47.

E X E R C I S E S

2.1 [20/15/10] <2.3,2.8> We are designing instruction set formats for a load-store a
tecture and are trying to decide whether it is worthwhile to have multiple offset length
branches and memory references. We have decided that both branch and memory
ences can have only 0-, 8-, and 16-bit offsets. The length of an instruction would be
to 16 bits + offset length in bits. ALU instructions will be 16 bits. Figure 2.32 contains
data in cumulative form. Assume an additional bit is needed for the sign on the offse

For instruction set frequencies, use the data for DLX from the average of the five be
marks for the load-store machine in Figure 2.26. Assume that the miscellaneous in
tions are all ALU instructions that use only registers.

a. [20] <2.3,2.8> Suppose offsets were permitted to be 0, 8, or 16 bits in length, inclu
the sign bit. What is the average length of an executed instruction?

b. [15] <2.3,2.8> Suppose we wanted a fixed-length instruction and we chose a 2
instruction length (for everything, including ALU instructions). For every offset
longer than 8 bits, an additional instruction is required. Determine the numbe

Exercises 119

ose

ition-
om-
used

ry ad-
ces of

struc-
. The
instruction bytes fetched in this machine with fixed instruction size versus th
fetched with a byte-variable-sized instruction as defined in part (a).

c. [10] <2.3,2.8> Now suppose we use a fixed offset length of 16 bits so that no add
al instruction is ever required. How many instruction bytes would be required? C
pare this result to your answer to part (b), which used 8-bit fixed offsets that
additional instruction words when larger offsets were required.

2.2 [15/10] <2.2> Several researchers have suggested that adding a register-memo
dressing mode to a load-store machine might be useful. The idea is to replace sequen

LOAD R1,0(Rb)

ADD R2,R2,R1

by

ADD R2,0(Rb)

Assume the new instruction will cause the clock cycle to increase by 10%. Use the in
tion frequencies for the gcc benchmark on the load-store machine from Figure 2.26
new instruction affects only the clock cycle and not the CPI.

Offset bits Cumulative data references Cumulative branches

0 17% 0%

1 17% 0%

2 23% 24%

3 32% 49%

4 40% 64%

5 48% 79%

6 54% 87%

7 57% 93%

8 60% 98%

9 61% 99%

10 69% 100%

11 71% 100%

12 75% 100%

13 78% 100%

14 80% 100%

15 100% 100%

FIGURE 2.32 The second and third columns contain the cumulative percentage of the
data references and branches, respectively, that can be accommodated with the
corresponding number of bits of magnitude in the displacement. These are the average
distances of all 10 programs in Figure 2.7.

120 Chapter 2 Instruction Set Principles and Examples

h the

 fol-
aced
ists.

 of

ion.

ory;
e re-
 other

ns
 regis-

ction

embly
ences

ch ar-
ficient

)

 and
h the
chine
a. [15] <2.2> What percentage of the loads must be eliminated for the machine wit
new instruction to have at least the same performance?

b. [10] <2.2> Show a situation in a multiple instruction sequence where a load of R1
lowed immediately by a use of R1 (with some type of opcode) could not be repl
by a single instruction of the form proposed, assuming that the same opcode ex

2.3 [20] <2.2> Your task is to compare the memory efficiency of four different styles
instruction set architectures. The architecture styles are

1. Accumulator—All operations occur between a single register and a memory locat

2. Memory-memory—All three operands of each instruction are in memory.

3. Stack—All operations occur on top of the stack. Only push and pop access mem
all other instructions remove their operands from stack and replace them with th
sult. The implementation uses a stack for the top two entries; accesses that use
stack positions are memory references.

4. Load-store—All operations occur in registers, and register-to-register instructio
have three operands per instruction. There are 16 general-purpose registers, and
ter specifiers are 4 bits long.

To measure memory efficiency, make the following assumptions about all four instru
sets:

■ The opcode is always 1 byte (8 bits).

■ All memory addresses are 2 bytes (16 bits).

■ All data operands are 4 bytes (32 bits).

■ All instructions are an integral number of bytes in length.

There are no other optimizations to reduce memory traffic, and the variables A, B, C, and D
are initially in memory.

Invent your own assembly language mnemonics and write the best equivalent ass
language code for the high-level-language fragment given. Write the four code sequ
for

A = B + C;

B = A + C;

D = A - B;

Calculate the instruction bytes fetched and the memory-data bytes transferred. Whi
chitecture is most efficient as measured by code size? Which architecture is most ef
as measured by total memory bandwidth required (code + data)?

2.4 [Discussion] <2.2–2.9> What are the economic arguments (i.e., more machines sold
for and against changing instruction set architecture?

2.5 [25] <2.1–2.5> Find an instruction set manual for some older machine (libraries
private bookshelves are good places to look). Summarize the instruction set wit
discriminating characteristics used in Figure 2.2. Write the code sequence for this ma

Exercises 121

ise 2.3

00, and
lues

any

scalar
the

any

e prior

ency
 the av-

ave
for the statements in Exercise 2.3. The size of the data need not be 32 bits as in Exerc
if the word size is smaller in the older machine.

2.6 [20] <2.8> Consider the following fragment of C code:

for (i=0; i<=100; i++)

{A[i] = B[i] + C;}

Assume that A and B are arrays of 32-bit integers, and C and i are 32-bit integers. Assume
that all data values and their addresses are kept in memory (at addresses 0, 5000, 15
2000 for A, B, C, and i , respectively) except when they are operated on. Assume that va
in registers are lost between iterations of the loop.

Write the code for DLX; how many instructions are required dynamically? How m
memory-data references will be executed? What is the code size in bytes?

2.7 [20] <App. D> Repeat Exercise 2.6, but this time write the code for the 80x86.

2.8 [20] <2.8> For this question use the code sequence of Exercise 2.6, but put the
data—the value of i , the value of C, and the addresses of the array variables (but not
actual array)—in registers and keep them there whenever possible.

Write the code for DLX; how many instructions are required dynamically? How m
memory-data references will be executed? What is the code size in bytes?

2.9 [20] <App. D> Make the same assumptions and answer the same questions as th
exercise, but this time write the code for the 80x86.

2.10 [15] <2.8> When designing memory systems it becomes useful to know the frequ
of memory reads versus writes and also accesses for instructions versus data. Using
erage instruction-mix information for DLX in Figure 2.26, find

■ the percentage of all memory accesses for data

■ the percentage of data accesses that are reads

■ the percentage of all memory accesses that are reads

Ignore the size of a datum when counting accesses.

2.11 [18] <2.8> Compute the effective CPI for DLX using Figure 2.26. Suppose we h
made the following measurements of average CPI for instructions:

Instruction Clock cycles

All ALU instructions 1.0

Loads-stores 1.4

Conditional branches

Taken 2.0

Not taken 1.5

Jumps 1.2

122 Chapter 2 Instruction Set Principles and Examples

e mis-
uen-

 ad-
ress.

verall

place-
s cal-
nced

hich

 one
ized.

a ac-

 in part

mea-
d. In
e pro-

ost
are?

milar

hry-

llow
use are
nstru-
u that

spice.

era-
es. We
Assume that 60% of the conditional branches are taken and that all instructions in th
cellaneous category of Figure 2.26 are ALU instructions. Average the instruction freq
cies of gcc and espresso to obtain the instruction mix.

2.12 [20/10] <2.3,2.8> Consider adding a new index addressing mode to DLX. The
dressing mode adds two registers and an 11-bit signed offset to get the effective add

Our compiler will be changed so that code sequences of the form

ADD R1, R1, R2

LW Rd, 100(R1)(or store)

will be replaced with a load (or store) using the new addressing mode. Use the o
average instruction frequencies from Figure 2.26 in evaluating this addition.

a. [20] <2.3,2.8> Assume that the addressing mode can be used for 10% of the dis
ment loads and stores (accounting for both the frequency of this type of addres
culation and the shorter offset). What is the ratio of instruction count on the enha
DLX compared to the original DLX?

b. [10] <2.3,2.8> If the new addressing mode lengthens the clock cycle by 5%, w
machine will be faster and by how much?

2.13 [25/15] <2.7> Find a C compiler and compile the code shown in Exercise 2.6 for
of the machines covered in this book. Compile the code both optimized and unoptim

a. [25] <2.7> Find the instruction count, dynamic instruction bytes fetched, and dat
cesses done for both the optimized and unoptimized versions.

b. [15] <2.7> Try to improve the code by hand and compute the same measures as
(a) for your hand-optimized version.

2.14 [30] <2.8> Small synthetic benchmarks can be very misleading when used for
suring instruction mixes. This is particularly true when these benchmarks are optimize
this exercise and Exercises 2.15–2.17, we want to explore these differences. Thes
gramming exercises can be done with any load-store machine.

Compile Whetstone with optimization. Compute the instruction mix for the top 20 m
frequently executed instructions. How do the optimized and unoptimized mixes comp
How does the optimized mix compare to the mix for spice on the same or a si
machine?

2.15 [30] <2.8> Follow the same guidelines as the prior exercise, but this time use D
stone and compare it with TeX.

2.16 [30] <2.8> Many computer manufacturers now include tools or simulators that a
you to measure the instruction set usage of a user program. Among the methods in
machine simulation, hardware-supported trapping, and a compiler technique that i
ments the object-code module by inserting counters. Find a processor available to yo
includes such a tool. Use it to measure the instruction set mix for one of TeX, gcc, or
Compare the results to those shown in this chapter.

2.17 [30] <2.3,2.8> DLX has only three operand formats for its register-register op
tions. Many operations might use the same destination register as one of the sourc

Exercises 123

 had
uired
per-
h the
ith

ines
(e.g., a
the re-
could introduce a new instruction format into DLX called R2 that has only two operands
and is a total of 24 bits in length. By using this instruction type whenever an operation
only two different register operands, we could reduce the instruction bandwidth req
for a program. Modify the DLX simulator to count the frequency of register-register o
ations with only two different register operands. Using the benchmarks that come wit
simulator, determine how much more instruction bandwidth DLX requires than DLX w
the R2 format.

2.18 [25] <App. C> How much do the instruction set variations among the RISC mach
discussed in Appendix C affect performance? Choose at least three small programs
sort), and code these programs in DLX and two other assembly languages. What is
sulting difference in instruction count?

	Instruction Set Principles and Examples
	A n Add the number in storage location n into the accumulator.
	E n If the number in the accumulator is greater than or equal to zero execute next the order whic...
	Z Stop the machine and ring the warning bell.

	Wilkes�and Renwick
	Selection from the List of 18 Machine Instructions for the EDSAC (1949)
	2.1 Introduction �69
	2.2 Classifying Instruction Set Architectures �70
	2.3 Memory Addressing �73
	2.4 Operations in the Instruction Set �80
	2.5 Type and Size of Operands �85
	2.6 Encoding an Instruction Set �87
	2.7 Crosscutting Issues: The Role of Compilers �89
	2.8 Putting It All Together: The DLX Architecture �96
	2.9 Fallacies and Pitfalls �108
	2.10 Concluding Remarks �111
	2.11 Historical Perspective and References �112
	Exercises �118
	2.1
	Introduction
	In this chapter we concentrate on instruction set archi�tecture—the portion of the machine visibl...
	Throughout this chapter, we examine a wide variety of architectural measurements. These measureme...
	We begin by exploring how instruction set architectures can be classified and analyzed.
	2.2
	Classifying Instruction Set Architectures
	The type of internal storage in the CPU is the most basic differentiation, so in this section we ...
	Stack
	Accumulator
	Register (register-memory)
	Register (load-store)
	Push A
	Load A
	Load R1,A
	Load R1,A
	Push B
	Add B
	Add R1,B
	Load R2,B
	Add
	Store C
	Store C,R1
	Add ��R3,R1,R2
	Pop C
	Store C,R3
	FIGURE 2.1� The code sequence for C = A + B for four in�struction sets. It is assumed that A, B, ...

	Although most early machines used stack or accumulator-style archi�tectures, virtually every mach...
	More importantly, registers can be used to hold variables. When variables are allocated to regist...
	How many registers are sufficient? The answer of course depends on how they are used by the compi...
	Two major instruction set characteristics divide GPR architectures. Both characteristics concern ...
	0
	3
	SPARC, MIPS, Precision Architecture, PowerPC, ALPHA
	1
	2
	Intel 80x86, Motorola 68000
	2
	2
	VAX (also has three-operand formats)
	3
	3
	VAX (also has two-operand formats)
	FIGURE 2.2� Possible combinations of memory operands and total operands per typical ALU instructi...

	The advantages and disadvantages of each of these alternatives are shown in Figure�2.3. Of course...
	Register- register
	(0,3)
	Simple, fixed-length instruction en�coding. Simple code-generation model. Instructions take simil...
	Higher instruction count than architectures with memory references in instructions. Some instruct...
	Register- memory
	(1,2)
	Data can be accessed without load�ing first. �Instruction format tends to be easy to encode and y...
	Operands are not equivalent since a source operand in a binary operation is destroyed. Encoding a...
	Memory- memory
	(3,3)
	Most compact. Doesn’t waste regis�ters for �temporaries.
	Large variation in instruction size, espe�cially for three-operand instructions. Also, large vari...
	FIGURE 2.3� Advantages and disadvantages of the three most common types of general-purpose regist...
	Summary: Classifying Instruction Set Architectures

	Here and in subsections at the end of sections�2.3 to 2.7 we summarize those characteristics we w...
	With the class of architecture covered, the next topic is addressing operands.
	2.3
	Memory Addressing
	Independent of whether the architecture is register-register or allows any operand to be a memory...
	Interpreting Memory Addresses

	How is a memory address interpreted? That is, what object is accessed as a �function of the addre...
	There are two different conventions for ordering the bytes within a word. �Little Endian byte ord...
	In many machines, accesses to objects larger than a byte must be aligned. An access to an object ...
	Object addressed
	Aligned at byte offsets
	Misaligned at byte offsets
	Byte
	0,1,2,3,4,5,6,7
	Never
	Half word
	0,2,4,6
	1,3,5,7
	Word
	0,4
	1,2,3,5,6,7
	Double word
	0
	1,2,3,4,5,6,7
	FIGURE 2.4� Aligned and misaligned accesses of objects. The byte offsets are speci�fied for the l...

	Why would someone design a machine with alignment restrictions? Misalignment causes hardware comp...
	Even if data are aligned, supporting byte and half-word accesses requires an alignment network to...
	Addressing Modes

	We now know what bytes to access in memory given an address. In this sub�section we will look at ...
	Figure 2.5 shows all the data-addressing modes that have been used in recent machines. Immediates...
	Addressing mode
	Example instruction
	Meaning
	When used
	Register
	Add R4,R3
	Regs[R4]¨Regs[R4]+ Regs[R3]
	When a value is in a register.
	Immediate
	Add R4,#3
	Regs[R4]¨Regs[R4]+3
	For constants.
	Displacement
	Add R4,100(R1)
	Regs[R4]¨Regs[R4]+ Mem[100+Regs[R1]]
	Accessing local variables.
	Register deferred or indirect
	Add R4,(R1)
	Regs[R4]¨Regs[R4]+ Mem[Regs[R1]]
	Accessing using a pointer or a computed address.
	Indexed
	Add R3,(R1 + R2)
	Regs[R3]¨Regs[R3]+ Mem[Regs[R1]+Regs[R2]]
	Sometimes useful in array ad�dressing: R1 = base of array; R2 = index amount.
	Direct or absolute
	Add R1,(1001)
	Regs[R1]¨Regs[R1]+ Mem[1001]
	Sometimes useful for accessing static data; address constant may need to be large.
	Memory indi�rect or memory �deferred
	Add R1,@(R3)
	Regs[R1]¨Regs[R1]+ Mem[Mem[Regs[R3]]]
	If R3 is the address of a pointer p, then mode yields *p.
	Autoincrement
	Add R1,(R2)+
	Regs[R1]¨Regs[R1]+ Mem[Regs[R2]]
	Regs[R2]¨Regs[R2]+d
	Useful for stepping through ar�rays within a loop. R2 points to start of array; each reference in...
	Autodecrement
	Add R1,–(R2)
	Regs[R2]¨Regs[R2]–d
	Regs[R1]¨Regs[R1]+ Mem[Regs[R2]]
	Same use as autoincrement. �Autodecrement/increment can also act as push/pop to implement a stack.
	Scaled
	Add R1,100(R2)[R3]
	Regs[R1]¨ Regs[R1]+ Mem[100+Regs[R2]+Regs [R3]*d]
	Used to index arrays. May be �applied to any indexed addressing mode in some machines.
	FIGURE 2.5� Selection of addressing modes with examples, meaning, and usage. The extensions to C ...

	Figure 2.5 shows the most common names for the addressing modes, though the names differ among ar...
	Addressing modes have the ability to significantly reduce instruc�tion counts; they also add to t...
	Figure 2.6 shows the results of measuring addressing mode usage patterns in three programs on the...
	As Figure 2.6 shows, immediate and displacement addressing dominate addressing mode usage. Let’s ...
	FIGURE 2.6� Summary of use of memory addressing modes (including immediates). The data were taken...
	Displacement Addressing Mode

	The major question that arises for a displacement-style addressing mode is that of the range of d...
	FIGURE 2.7� Displacement values are widely distributed. The x axis is log2 of the displacement; t...
	Immediate or Literal Addressing Mode

	Immediates can be used in arithmetic operations, in comparisons (primarily for branches), and in ...
	FIGURE 2.8� We see that for ALU operations about one-half to three-quarters of the operations hav...

	Another important instruction set measurement is the range of val�ues for im�mediates. Like displ...
	FIGURE 2.9� The distribution of immediate values is shown. The x axis shows the number of bits ne...
	Summary: Memory Addressing

	First, because of their popularity, we would expect a new architecture to support at least the fo...
	Operator type
	Examples
	Arithmetic and logical
	Integer arithmetic and logical operations: add, and, subtract, or
	Data transfer
	Loads-stores (move instructions on machines with memory addressing)
	Control
	Branch, jump, procedure call and return, traps
	System
	Operating system call, virtual memory management instructions
	Floating point
	Floating-point operations: add, multiply
	Decimal
	Decimal add, decimal multiply, decimal-to-character conversions
	String
	String move, string compare, string search
	Graphics
	Pixel operations, compression/decompression operations
	FIGURE 2.10� Categories of instruction operators and examples of each. All machines generally pro...

	2.4
	Operations in the Instruction Set
	The operators supported by most instruction set architectures can be categorized, as in Figure 2....
	Rank
	80x86 instruction
	Integer average (% total executed)
	1
	load
	22%
	2
	conditional branch
	20%
	3
	compare
	16%
	4
	store
	12%
	5
	add
	8%
	6
	and
	6%
	7
	sub
	5%
	8
	move register-register
	4%
	9
	call
	1%
	10
	return
	1%
	Total
	96%
	FIGURE 2.11� The top 10 instructions for the 80x86. These percentages are the average of the same...

	Because the measure�ments of branch and jump behavior are fairly independent of other mea�suremen...
	Instructions for Control Flow

	There is no consistent terminology for instructions that change the flow of control. In the 1950s...
	We can distinguish four different types of control-flow change:
	1. Conditional branches
	2. Jumps
	3. Procedure calls
	4. Procedure returns

	We want to know the relative frequency of these events, as each event is differ�ent, may use diff...
	FIGURE 2.12� Breakdown of control flow instructions into three classes: calls or returns, jumps, ...

	The destination address of a control flow instruction must always be specified. This destina�tion...
	To implement returns and indirect jumps in which the target is not known at compile time, a metho...
	As branches generally use PC-relative addressing to specify their targets, a key question concern...
	FIGURE 2.13� Branch distances in terms of number of instructions between the target and the branc...

	Since most changes in control flow are branches, deciding how to specify the branch condi�tion is...
	Name
	How condition is tested
	Advantages
	Disadvantages
	Condition code (CC)
	Special bits are set by ALU operations, possibly under program �control.
	Sometimes condition is set for free.
	CC is extra state. Condition codes con�strain the ordering of instruc�tions since they pass infor...
	Condition register
	Test arbitrary register with the �result of a comparison.
	Simple.
	Uses up a register.
	Compare and branch
	Compare is part of the branch. Often compare is limited to subset.
	One instruction rather than two for a branch.
	May be too much work per �instruction.
	FIGURE 2.14� The major methods for evaluating branch conditions, their advantages, and their disa...

	One of the most noticeable properties of branches is that a large number of the comparisons are s...
	FIGURE 2.15� Frequency of different types of compares in conditional branches. This includes both...

	Procedure calls and returns include control transfer and possi�bly some state saving; at a minimu...
	In the cases where either convention could be used, some programs will be more opti�mal with call...
	Summary: Operations in the Instruction Set

	From this section we see the importance and popularity of simple instructions: load, store, add, ...
	2.5
	Type and Size of Operands
	How is the type of an operand designated? There are two primary alternatives: First, the type of ...
	Usually the type of an operand—for example, integer, single-precision floating point, character—e...
	Some architectures provide operations on character strings, although such operations are usually ...
	For business applications, some architectures support a decimal format, usu�ally called packed de...
	Our benchmarks use byte or character, half word (short integer), word (integer), and floating-poi...
	Note that Figure 2.16 was measured on a machine with 32-bit addresses: On a 64-bit address machin...
	FIGURE 2.16� Distribution of data accesses by size for the benchmark programs. Access to the majo...
	Summary: Type and Size of Operands

	From this section we would expect a new 32-bit architecture to support 8-, 16-, and 32-bit intege...
	2.6
	Encoding an Instruction Set
	Clearly the choices mentioned above will affect how the instructions are encoded into a binary re...
	This decision depends on the range of addressing modes and the degree of independence between opc...
	When encoding the instructions, the number of registers and the number of addressing modes both h...
	1. The desire to have as many registers and addressing modes as possible.
	2. The impact of the size of the register and addressing mode fields on the average instruction s...
	3. A desire to have instructions encode into lengths that will be easy to handle in the implement...

	Since the addressing modes and register fields make up such a large percent�age of the instructio...
	Figure 2.17 shows three popular choices for encoding the instruction set. The first we call varia...
	FIGURE 2.17� Three basic variations in instruction encoding. The variable format can support any ...

	To make these general classes more specific, this book contains several examples. Fixed formats o...
	Let’s look at a VAX instruction to see an example of the variable encoding:
	addl3 r1,737(r2),(r3)

	The name addl3 means a 32-bit integer add instruction with three operands, and this opcode takes ...
	1 + (1) + (1+2) + (1) = 6 bytes

	The length of VAX instructions varies between 1 and 53 bytes.
	Summary: Encoding the Instruction Set

	Decisions made in the components of instruction set design discussed in prior sections determine ...
	We have almost finished laying the groundwork for the DLX instruction set �architecture that will...
	2.7
	Crosscutting Issues: The Role of Compilers
	Today almost all programming is done in high-level languages. This develop- �ment means that sinc...
	The Structure of Recent Compilers

	To begin, let’s look at what optimizing compilers are like today. The structure of recent compile...
	FIGURE 2.18� Current compilers typically consist of two to four passes, with more highly optimizi...

	A compiler writer’s first goal is correct�ness—all valid programs must be compiled correctly. The...
	The complexity of writing a correct compiler is a major limitation on the amount of optimization ...
	How does this ordering of transformations interact with the in�struction set architecture? A good...
	Optimizations performed by modern compil�ers can be classified by the style of the transformation...
	1. High-level optimizations are often done on the source with output fed to later optimization pa...
	2. Local optimizations optimize code only within a straight-line code fragment (called a basic bl...
	3. Global optimizations extend the local optimizations across branches and introduce a set of tra...
	4. Register allocation.
	5. Machine-dependent optimizations attempt to take advantage of specific architectural knowledge.

	Because of the central role that register allocation plays, both in speeding up the code and in m...
	Graph coloring works best when there are at least 16 (and preferably more) general-purpose regist...
	It is sometimes difficult to separate some of the simpler opti�mizations—local and machine-depend...
	Optimization name
	Explanation
	Percentage of the total number of optimizing transforms
	High-level
	At or near the source level; machine- inde�pendent
	Procedure integration
	Replace procedure call by procedure body
	N.M.
	Local
	Within straight-line code
	Common subexpression elimination
	Replace two instances of the same computa�tion by single copy
	18%
	Constant propagation
	Replace all instances of a variable that is as�signed a constant with the constant
	22%
	Stack height reduction
	Rearrange expression tree to minimize re�sources needed for expression �evaluation
	N.M.
	Global
	Across a branch
	Global common subexpression elimination
	Same as local, but this version crosses branches
	13%
	Copy propagation
	Replace all instances of a variable A that has been assigned X (i.e., A = X) with X
	11%
	Code motion
	Remove code from a loop that computes same value each iteration of the loop
	16%
	Induction variable elimina�tion
	Simplify/eliminate array-addressing calcula�tions within loops
	2%
	Machine-dependent
	Depends on machine knowledge
	Strength reduction
	Many examples, such as replace multiply by a con�stant with adds and shifts
	N.M.
	Pipeline scheduling
	Reorder instructions to improve pipeline per�formance
	N.M.
	Branch offset optimization
	Choose the shortest branch displacement that reaches target
	N.M.
	FIGURE 2.19� Major types of optimizations and examples in each class. The third column lists the ...
	FIGURE 2.20� Change in instruction count for the programs hydro2d and li from the SPEC92 as compi...
	The Impact of Compiler Technology on the Architect’s �Decisions

	The interaction of compilers and high-level lan�guages significantly affects how programs use an ...
	The stack is used to allocate local variables. The stack is grown and shrunk on procedure call or...
	The global data area is used to allocate statically declared ob�jects, such as global variables a...
	The heap is used to allocate dynamic objects that do not adhere to a stack discipline. Objects in...
	Register allocation is much more effective for stack-allocated objects than for global variables,...
	p = &a –– gets address of a in p a = ... –– assigns to a directly *p = ... –– uses p to assign to...

	The variable a could not be register allocated across the assignment to *p without generating inc...
	How the Architect Can Help the Compiler Writer

	Today, the complexity of a compiler does not come from translating simple statements like A = B +...
	Compiler writers often are working under their own corollary of a basic principle in architecture...
	Some instruction set properties help the compiler writer. These properties should not be thought ...
	1. Regularity;—Whenever it makes sense, the three primary compo�nents of an instruction set—the o...
	2. Provide primitives, not solutions—Special features that “match” a language construct are often...
	3. Simplify trade-offs among alternatives—One of the toughest jobs a compiler writer has is figur...
	4. Provide instructions that bind the quantities known at compile time as �con�stants—A compiler ...
	Summary: The Role of Compilers

	This section leads to several recommendations. First, we expect a new instruction set architectur...
	2.8
	Putting It All Together: The DLX Architecture
	In many places throughout this book we will have occasion to refer to a computer’s “machine langu...
	Î(360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220 + S2000 + 920 + 601 + H800 + PDP-...
	The same number may be obtained in a simpler way by taking Roman numerals.
	Donald Knuth, The Art of Computer Programming, Volume�I:�Fundamental�Algorithms
	In this section we will describe a simple load-store architecture called DLX (pronounced “Deluxe”...
	(AMD 29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A, MIPS M/1000, Motorola 88K, R...
	The instruction set architecture of DLX and its ancestors was based on observations similar to th...
	Section 2.2—Use general-purpose registers with a load-store architecture.
	Section 2.3—Support these addressing modes: displacement (with an address offset size of 12 to 16...
	Section 2.4—Support these simple instructions, since they will dominate the number of instruction...
	Section 2.5—Support these data sizes and types: 8-, 16-, and 32-bit integers and 64-bit IEEE 754 ...
	Section 2.6—Use fixed instruction encoding if interested in performance and use variable instruct...
	Section 2.7—Provide at least 16 general-purpose registers plus separate f�loating- point register...
	We introduce DLX by showing how it follows these recommendations. Like most recent machines, DLX ...
	A simple load-store instruction set
	Design for pipelining efficiency, including a fixed instruction set encoding (discussed in Chapte...
	Efficiency as a compiler target
	DLX provides a good architectural model for study, not only because of the recent popularity of t...
	Registers for DLX

	DLX has 32 32-bit general-purpose registers (GPRs), named R0, R1, …, R31. Additionally, there is ...
	The value of R0 is always 0. We shall see later how we can use this register to synthesize a vari...
	A few special registers can be transferred to and from the integer registers. An example is the f...
	Data types for DLX

	The data types are 8-bit bytes, 16-bit half words, and 32-bit words for integer data and 32-bit s...
	The DLX operations work on 32-bit integers and 32- or 64-bit floating point. Bytes and half words...
	Addressing modes for DLX data transfers

	The only data addressing modes are immediate and displacement, both with 16- bit fields. Register...
	DLX memory is byte addressable in Big Endian mode with a 32-bit address. As it is a load-store ar...
	DLX Instruction Format

	Since DLX has just two addressing modes, these can be encoded into the opcode. Following the advi...
	FIGURE 2.21� Instruction layout for DLX. All instructions are encoded in one of three types.
	DLX Operations

	DLX supports the list of simple operations recommended above plus a few others. There are four br...
	Any of the general-purpose or floating-point registers may be loaded or stored, except that loadi...
	Example instruction
	Instruction name
	Meaning
	LW �R1,30(R2)
	Load word
	Regs[R1]¨32 Mem[30+Regs[R2]]
	LW R1,1000(R0)
	Load word
	Regs[R1]¨32 Mem[1000+0]
	LB R1,40(R3)
	Load byte
	Regs[R1]¨32 (Mem[40+Regs[R3]]0)24 ## Mem[40+Regs[R3]]
	LBU R1,40(R3)
	Load byte unsigned
	Regs[R1]¨32 024 ## Mem[40+Regs[R3]]
	LH R1,40(R3)
	Load half word
	Regs[R1]¨32 (Mem[40+Regs[R3]]0)16 ## Mem[40+Regs[R3]]##Mem[41+Regs[R3]]
	LF F0,50(R3)
	Load float
	Regs[F0]¨32 Mem[50+Regs[R3]]
	LD F0,50(R2)
	Load double
	Regs[F0]##Regs[F1]¨64 Mem[50+Regs[R2]]
	SW R3,500(R4)
	Store word
	Mem[500+Regs[R4]]¨32 Regs[R3]
	SF F0,40(R3)
	Store float
	Mem[40+Regs[R3]]¨32 Regs[F0]
	SD �F0,40(R3)
	Store double
	Mem[40+Regs[R3]]¨32 Regs[F0]; Mem[44+Regs[R3]]¨32 Regs[F1]
	SH R3,502(R2)
	Store half
	Mem[502+Regs[R2]]¨16 Regs[R3]16..31
	SB R2,41(R3)
	Store byte
	Mem[41+Regs[R3]]¨8 Regs[R2]24..31
	FIGURE 2.22� The load and store instructions in DLX. All use a single addressing mode and require...

	A subscript is appended to the symbol ¨ whenever the length of the datum being transferred might ...
	A subscript is used to indicate selection of a bit from a field. Bits are labeled from the most-s...
	The variable Mem, used as an array that stands for main memory, is indexed by a byte address and ...
	A superscript is used to replicate a field (e.g., 024 yields a field of zeros of length 24 bits).
	The symbol ## is used to concatenate two fields and may appear on either side of a data transfer.
	A summary of the entire description language appears on the back inside �cover. As an example, as...
	means that the byte at the memory location addressed by the contents of R8 is sign-extended to fo...
	All ALU instructions are register-register instructions. The opera�tions include simple arithmeti...
	As mentioned above, R0 is used to synthesize popular operations. Loading a constant is simply an ...
	There are also compare instructions, which compare two registers (=, ¹, <, >, £, ³). If the condi...
	Example instruction
	Instruction name
	Meaning
	ADD �R1,R2,R3
	Add
	Regs[R1]¨Regs[R2]+Regs[R3]
	ADDI R1,R2,#3
	Add immediate
	Regs[R1]¨Regs[R2]+3
	LHI R1,#42
	Load high immediate
	Regs[R1]¨42##016
	SLLI R1,R2,#5
	Shift left logical �immediate
	Regs[R1]¨Regs[R2]<<5
	SLT R1,R2,R3
	Set less than
	if (Regs[R2]<Regs[R3]) Regs[R1]¨1 else Regs[R1]¨0
	FIGURE 2.23� Examples of arithmetic/logical instructions on DLX, both with and without immediates.

	Control is handled through a set of jumps and a set of branches. The four jump instructions are d...
	All branches are conditional. The branch condition is specified by the in�struction, which may te...
	Example instruction
	Instruction name
	Meaning
	J name
	Jump
	PC¨name; ((PC+4)–225) £ name < ((PC+4)+225)
	JAL name
	Jump and link
	Regs[R31]¨PC+4; PC¨name; ((PC+4)–225) £ name < ((PC+4)+225)
	JALR R2
	Jump and link register
	Regs[R31]¨PC+4; PC¨Regs[R2]
	JR ��R3
	Jump register
	PC¨Regs[R3]
	BEQZ R4,name
	Branch equal zero
	if (Regs[R4]==0) PC¨name; ((PC+4)–215) £ name < ((PC+4)+215)
	BNEZ R4,name
	Branch not equal zero
	if (Regs[R4]!=0) PC¨name; ((PC+4)–215) £ name < ((PC+4)+215)
	FIGURE 2.24� Typical control-flow instructions in DLX. All control instructions, except jumps to ...

	Floating-point instructions manipulate the floating-point registers and indicate whether the oper...
	The floating-point operations are add, subtract, multiply, and divide; a suffix D is used for dou...
	One slightly unusual DLX characteristic is that it uses the floating-point unit for integer multi...
	Figure�2.25 contains a list of all DLX operations and their meaning. To give an idea which instru...
	Instruction type/opcode
	Instruction meaning
	Data transfers
	Move data between registers and memory, or between the integer and FP or �special registers; only...
	LB,LBU,SB
	Load byte, load byte unsigned, store byte
	LH,LHU,SH
	Load half word, load half word unsigned, store half word
	LW,SW
	Load word, store word (to/from integer registers)
	LF,LD,SF,SD
	Load SP float, load DP float, store SP float, store DP float
	MOVI2S, MOVS2I
	Move from/to GPR to/from a special register
	MOVF, MOVD
	Copy one FP register or a DP pair to another register or pair
	MOVFP2I,MOVI2FP
	Move 32 bits from/to FP registers to/from integer registers
	Arithmetic/logical
	Operations on integer or logical data in GPRs; signed arithmetic trap on overflow
	ADD,ADDI,ADDU, �ADDUI
	Add, add immediate (all immediates are 16 bits); signed and unsigned
	SUB,SUBI,SUBU, �S�UBUI
	Subtract, subtract immediate; signed and unsigned
	MULT,MULTU,DIV,�DIVU
	Multiply and divide, signed and unsigned; operands must be FP registers; all operations take and ...
	AND,ANDI
	And, and immediate
	OR,ORI,XOR,XORI
	Or, or immediate, exclusive or, exclusive or immediate
	LHI
	Load high immediate—loads upper half of register with immediate
	SLL, SRL, SRA, �SLLI, �SRLI, SRAI
	Shifts: both immediate (S__I) and variable form (S__); shifts are shift left logical, right logic...
	S__,S__I
	Set conditional: “__” may be LT,GT,LE,GE,EQ,NE
	Control
	Conditional branches and jumps; PC-relative or through register
	BEQZ,BNEZ
	Branch GPR equal/not equal to zero; 16-bit offset from PC+4
	BFPT,BFPF
	Test comparison bit in the FP status register and branch; 16-bit offset from PC+4
	J, JR
	Jumps: 26-bit offset from PC+4 (J) or target in register (JR)
	JAL, JALR
	Jump and link: save PC+4 in R31, target is PC-relative (JAL) or a register (JALR)
	TRAP
	Transfer to operating system at a vectored address
	RFE
	Return to user code from an exception; restore user mode
	Floating point
	FP operations on DP and SP formats
	ADDD,ADDF
	Add DP, SP numbers
	SUBD,SUBF
	Subtract DP, SP numbers
	MULTD,MULTF
	Multiply DP, SP floating point
	DIVD,DIVF
	Divide DP, SP floating point
	CVTF2D, CVTF2I, CVTD2F, CVTD2I, CVTI2F, CVTI2D
	Convert instructions: CVTx2y converts from type x to type y, where x and y are I (integer), D (do...
	__D,__F
	DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE; sets bit in FP �status register
	FIGURE 2.25� Complete list of the instructions in DLX. The formats of these instructions are show...

	Instruction
	compress
	eqntott
	espresso
	gcc (cc1)
	li
	Integer average
	load
	19.8%
	30.6%
	20.9%
	22.8%
	31.3%
	26%
	store
	5.6%
	0.6%
	5.1%
	14.3%
	16.7%
	9%
	add
	14.4%
	8.5%
	23.8%
	14.6%
	11.1%
	14%
	sub
	1.8%
	0.3%
	0.5%
	0%
	mul
	0.1%
	0%
	div
	0%
	compare
	15.4%
	26.5%
	8.3%
	12.4%
	5.4%
	14%
	load imm
	8.1%
	1.5%
	1.3%
	6.8%
	2.4%
	4%
	cond branch
	17.4%
	24.0%
	15.0%
	11.5%
	14.6%
	17%
	jump
	1.5%
	0.9%
	0.5%
	1.3%
	1.8%
	1%
	call
	0.1%
	0.5%
	0.4%
	1.1%
	3.1%
	1%
	return, jmp ind
	0.1%
	0.5%
	0.5%
	1.5%
	3.5%
	1%
	shift
	6.5%
	0.3%
	7.0%
	6.2%
	0.7%
	4%
	and
	2.1%
	0.1%
	9.4%
	1.6%
	2.1%
	3%
	or
	6.0%
	5.5%
	4.8%
	4.2%
	6.2%
	5%
	other (xor, not)
	1.0%
	2.0%
	0.5%
	0.1%
	1%
	load FP
	0%
	store FP
	0%
	add FP
	0%
	sub FP
	0%
	mul FP
	0%
	div FP
	0%
	compare FP
	0%
	mov reg-reg FP
	0%
	other FP
	0%
	FIGURE 2.26� DLX instruction mix for five SPECint92 programs. Note that integer register-register...

	Instruction
	doduc
	ear
	hydro2d
	mdljdp2
	su2cor
	FP average
	load
	1.4%
	0.2%
	0.1%
	1.1%
	3.6%
	1%
	store
	1.3%
	0.1%
	0.1%
	1.3%
	1%
	add
	13.6%
	13.6%
	10.9%
	4.7%
	9.7%
	11%
	sub
	0.3%
	0.2%
	0.7%
	0%
	mul
	0%
	div
	0%
	compare
	3.2%
	3.1%
	1.2%
	0.3%
	1.3%
	2%
	load imm
	2.2%
	0.2%
	2.2%
	0.9%
	1%
	cond branch
	8.0%
	10.1%
	11.7%
	9.3%
	2.6%
	8%
	jump
	0.9%
	0.4%
	0.4%
	0.1%
	0%
	call
	0.5%
	1.9%
	0.3%
	1%
	return, jmp ind
	0.6%
	1.9%
	0.3%
	1%
	shift
	2.0%
	0.2%
	2.4%
	1.3%
	2.3%
	2%
	and
	0.4%
	0.1%
	0.3%
	0%
	or
	0.2%
	0.1%
	0.1%
	0.1%
	0%
	other (xor, not)
	0%
	load FP
	23.3%
	19.8%
	24.1%
	25.9%
	21.6%
	23%
	store FP
	5.7%
	11.4%
	9.9%
	10.0%
	9.8%
	9%
	add FP
	8.8%
	7.3%
	3.6%
	8.5%
	12.4%
	8%
	sub FP
	3.8%
	3.2%
	7.9%
	10.4%
	5.9%
	6%
	mul FP
	12.0%
	9.6%
	9.4%
	13.9%
	21.6%
	13%
	div FP
	2.3%
	1.6%
	0.9%
	0.7%
	1%
	compare FP
	4.2%
	6.4%
	10.4%
	9.3%
	0.8%
	6%
	mov reg-reg FP
	2.1%
	1.8%
	5.2%
	0.9%
	1.9%
	2%
	other FP
	2.4%
	8.4%
	0.2%
	0.2%
	1.2%
	2%
	FIGURE 2.27� DLX instruction mix for five programs from SPECfp92. Note that integer register-regi...
	FIGURE 2.28� Graphical display of instructions executed of the five programs from SPECint92 in Fi...
	FIGURE 2.29� Graphical display of instructions executed of the five programs from SPECfp92 in Fig...
	Effectiveness of DLX

	It would seem that an architecture with simple instruction formats, simple address modes, and sim...
	To see whether reduction in instruction count is offset by increases in CPI or clock cycle time, ...
	One example of a sophisticated instruction set architecture is the VAX. In the mid 1970s, when th...
	Designers of VAX machines later performed a quantitative comparison of VAX and a DLX-like machine...
	Figure 2.30 shows the ratio of the number of instructions executed, the ratio of CPIs, and the ra...
	FIGURE 2.30� Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cy...

	2.9
	Fallacies and Pitfalls
	Time and again architects have tripped on common, but erroneous, beliefs. In this section we look...
	Pitfall: Designing a “high-level” instruction set feature specifically oriented to supporting a h...
	Attempts to incorporate high-level language features in the instruction set have led architects t...
	... by giving too much semantic content to the instruction, the machine designer made it possible...
	More often the instructions are simply overkill—they are too general for the most frequent case, ...
	1. Align the stack if needed.
	2. Push the argument count on the stack.
	3. Save the registers indicated by the procedure call mask on the stack (as men�tioned in section...
	4. Push the return address on the stack, then push the top and base of stack pointers for the act...
	5. Clear the condition codes, which sets the trap enables to a known state.
	6. Push a word for status information and a zero word on the stack.
	7. Update the two stack pointers.
	8. Branch to the first instruction of the procedure.

	The vast majority of calls in real programs do not require this amount of overhead. Most procedur...
	The VAX designers provided a simpler instruction, JSB, that is much faster since it only pushes t...
	Fallacy: There is such a thing as a typical program.
	Many people would like to believe that there is a single “typical” program that could be used to ...
	FIGURE 2.31� Data reference size of four programs from SPEC92. Although you can calculate an aver...

	The 80x86 provides a dramatic example: The architecture is one only its creators could love (see ...
	All architecture design involves trade-offs made in the context of a set of hardware and software...
	2.10
	Concluding Remarks
	The earliest architectures were limited in their instruction sets by the hardware technology of t...
	Today, there is widespread agreement on instruction set design. However, in the next decade we ex...
	The 32-bit address instruction sets are being extended to 64-bit addresses, expanding the width o...
	Given the popularity of software for the 80x86 architecture, many companies are looking to see if...
	In the next two chapters we will see that conditional branches can limit the performance of aggre...
	Chapter 5 explains the increasing role of memory hierarchy in performance of machines, with a cac...
	Appendix A describes new operations to enhance floating-point performance, such as operations tha...
	Between 1970 and 1985 many thought the primary job of the computer architect was the design of in...
	The definition of computer architecture today has been expanded to include design and evaluation ...
	2.11
	Historical Perspective and References
	One’s eyebrows should rise whenever a future architecture is de�veloped with a stack- or register...
	Meyers [1978]
	The earliest computers, including the Univac I, the EDSAC, and the IAS machines, were accumulator...
	In 1963, Burroughs delivered the B5000. The B5000 was per�haps the first machine to seriously con...
	1. Performance is derived from fast registers, not the way they are used.
	2. The stack organization is too limiting and requires many swap and copy operations.
	3. The stack has a bottom, and when placed in slower memory there is a perfor�mance loss.

	Stack-based machines fell out of favor in the late 1970s and, except for the Intel 80x86 floating...
	The term computer architecture was coined by IBM in the early 1960s. Amdahl, Blaauw, and Brooks [...
	... the structure of a computer that a machine language programmer must understand to write a cor...
	The term “machine language programmer” meant that compati�bility would hold, even in assembly lan...
	The IBM 360 was the first machine to sell in large quantities with both byte addressing using 8-b...
	In 1964, Control Data delivered the first supercomputer, the CDC 6600. As Thornton [1964] discuss...
	In the late 1960s and early 1970s, people realized that software costs were growing faster than h...
	Strecker’s article [1978] discusses how he and the other architects at DEC responded to this by d...
	The VAX-11/780 was the first machine announced in the VAX series. It is one of the most successfu...
	While the VAX was being designed, a more radical approach, called high- �level-language computer ...
	HLLCA never had a significant commercial impact. The increase in memory size on machines and the ...
	In the early 1980s, the direction of computer architecture be�gan to swing away from providing hi...
	The simple load-store machines from which DLX is derived are commonly called RISC architec�tures....
	Begun in 1975, the IBM project was the first to start but was the last to become public. The IBM ...
	In 1980, Patterson and his colleagues at Berkeley began the project that was to give this archite...
	In 1981, Hennessy and his colleagues at Stanford published a description of the Stanford MIPS mac...
	These early RISC machines—the 801, RISC-II, and MIPS—had much in common. Both university projects...
	In 1985, Hennessy published an explanation of the RISC performance advantage and traced its roots...
	Since the university projects finished up, in the 1983–84 time frame, the technology has been wid...
	In 1986, the computer industry began to announce processors based on the technology explored by t...
	Prior to the RISC architecture movement, the major trend had been highly microcoded architectures...
	References

	Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr. [1964]. “Architecture of the IBM �System 360,”...
	Barton, R. S. [1961]. “A new approach to the functional design of a computer,” Proc. Western Join...
	Bell, G., R. Cady, H. McFarland, B. DeLagi, J. O’Laughlin, R. Noonan, and W. Wulf [1970]. “A new ...
	Bhandarkar, D., and D. W. Clark [1991]. “Performance from architecture: Comparing a RISC and a CI...
	Chow, F. C. [1983]. A Portable Machine-Independent Global Optimizer—Design and Measurements, Ph.D...
	Clark, D. and H. Levy [1982]. “Measurement and analysis of instruction set use in the VAX-11/ 780...
	Clark, D. and W. D. Strecker [1980]. “Comments on ‘the case for the reduced instruction set compu...
	Crawford, J. and P. Gelsinger [1988]. Programming the 80386, Sybex Books, Alameda, Calif.
	Ditzel, D. R. and D. A. Patterson [1980]. “Retrospective on high-level language computer architec...
	Emer, J. S. and D. W. Clark [1984]. “A characterization of processor performance in the VAX-11/ 7...
	Gagliardi, U. O. [1973]. “Report of workshop 4–Software-related advances in computer hard�ware,” ...
	Garner, R., A. Agarwal, F. Briggs, E. Brown, D. Hough, B. Joy, S. Kleiman, S. Munchnik, M. Namjoo...
	Hauck, E. A., and B. A. Dent [1968]. “Burroughs’ B6500/B7500 stack mechanism,” Proc. AFIPS SJCC, ...
	Hennessy, J. [1984]. “VLSI processor architecture,” IEEE Trans. on Computers C-33:11 (December), ...
	Hennessy, J. [1985]. “VLSI RISC processors,” VLSI Systems Design VI:10 (October), 22–32.
	Hennessy, J., N. Jouppi, F. Baskett, and J. Gill [1981]. “MIPS: A VLSI processor architecture,” P...
	Kane, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J.
	Lee, R. [1989]. “Precision architecture,” Computer 22:1 (January), 78–91.
	Levy, H. and R. Eckhouse [1989]. Computer Programming and Architecture: The VAX, Digital Press, B...
	Lunde, A. [1977]. “Empirical evaluation of some features of instruction set processor architectur...
	McKeeman, W. M. [1967]. “Language directed computer design,” Proc. 1967 Fall Joint Computer Conf....
	Meyers, G. J. [1978]. “The evaluation of expressions in a storage-to-storage architecture,” Com�p...
	Meyers, G. J. [1982]. Advances in Computer Architecture, 2nd ed., Wiley, New York.
	Moussouris, J., L. Crudele, D. Freitas, C. Hansen, E. Hudson, S. Przybylski, T. Riordan, and C. R...
	Patterson, D. [1985]. “Reduced instruction set computers,” Comm. ACM 28:1 (January), 8–21.
	Patterson, D. A. and D. R. Ditzel [1980]. “The case for the reduced instruction set computer,” Co...
	Radin, G. [1982]. “The 801 minicomputer,” Proc. Symposium Architectural Support for Programming L...
	Strecker, W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11 family,” Proc. AFI...
	Tanenbaum, A. S. [1978]. “Implications of structured programming for machine architecture,” Comm....
	Taylor, G., P. Hilfinger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of the SPUR LIS...
	Thornton, J. E. [1964]. “Parallel operation in Control Data 6600,” Proc. AFIPS Fall Joint �Com�pu...
	Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture of SOAR: Smallta...
	Wakerly, J. [1989]. Microcomputer Architecture and Programming, J. Wiley, New York.
	Waters, F., ed. [1986]. IBM RT Personal Computer Technology, IBM, Austin, Tex., SA 23-1057.
	Wiecek, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler execution,” Pro...
	Wulf, W. [1981]. “Compilers and computer architecture,” Computer 14:7 (July), 41–47.
	Exercises
	2.1� [20/15/10] <2.3,2.8> We are designing instruction set formats for a load-store archi�tecture...

	For instruction set frequencies, use the data for DLX from the average of the five benchmarks for...
	Offset bits
	Cumulative data references
	Cumulative branches
	0
	17%
	0%
	1
	17%
	0%
	2
	23%
	24%
	3
	32%
	49%
	4
	40%
	64%
	5
	48%
	79%
	6
	54%
	87%
	7
	57%
	93%
	8
	60%
	98%
	9
	61%
	99%
	10
	69%
	100%
	11
	71%
	100%
	12
	75%
	100%
	13
	78%
	100%
	14
	80%
	100%
	15
	100%
	100%
	FIGURE 2.32� The second and third columns contain the cumulative percentage of the data refer�enc...
	a. [20] <2.3,2.8> Suppose offsets were permitted to be 0, 8, or 16 bits in length, including the ...
	b. [15] <2.3,2.8> Suppose we wanted a fixed-length instruction and we chose a 24-bit �instruction...
	c. [10] <2.3,2.8> Now suppose we use a fixed offset length of 16 bits so that no additional instr...
	2.2� [15/10] <2.2> Several researchers have suggested that adding a register-memory addressing mo...

	LOAD R1,0(Rb) ADD R2,R2,R1
	by
	ADD R2,0(Rb)
	Assume the new instruction will cause the clock cycle to increase by 10%. Use the instruction fre...
	a. [15] <2.2> What percentage of the loads must be eliminated for the machine with the new instru...
	b. [10] <2.2> Show a situation in a multiple instruction sequence where a load of R1 followed imm...
	2.3� [20] <2.2> Your task is to compare the memory efficiency of four different styles of instruc...
	1. Accumulator—All operations occur between a single register and a memory �location.

	2. Memory-memory—All three operands of each instruction are in memory.
	3. Stack—All operations occur on top of the stack. Only push and pop access memory; all other ins...
	4. Load-store—All operations occur in registers, and register-to-register instruc�tions have thre...

	To measure memory efficiency, make the following assumptions about all four instruc�tion sets:
	The opcode is always 1 byte (8 bits).
	All memory addresses are 2 bytes (16 bits).
	All data operands are 4 bytes (32 bits).
	All instructions are an integral number of bytes in length.
	There are no other optimizations to reduce memory traffic, and the variables A, B, C, and D are i...
	Invent your own assembly language mnemonics and write the best equivalent assembly language code ...
	A = B + C; B = A + C; D = A - B;
	Calculate the instruction bytes fetched and the memory-data bytes transferred. Which architecture...
	2.4� [Discussion] <2.2–2.9> What are the economic arguments (i.e., more machines sold) for and ag...
	2.5� [25] <2.1–2.5> Find an instruction set manual for some older machine (libraries and private ...
	2.6� [20] <2.8> Consider the following fragment of C code:

	for (i=0; i<=100; i++) {A[i] = B[i] + C;}
	Assume that A and B are arrays of 32-bit integers, and C and i are 32-bit integers. Assume that a...
	Write the code for DLX; how many instructions are required dynamically? How many memory-data refe...
	2.7� [20] <App. D> Repeat Exercise 2.6, but this time write the code for the 80x86.
	2.8� [20] <2.8> For this question use the code sequence of Exercise 2.6, but put the scalar data—...

	Write the code for DLX; how many instructions are required dynamically? How many memory-data refe...
	2.9� [20] <App. D> Make the same assumptions and answer the same questions as the prior exercise,...
	2.10� [15] <2.8> When designing memory systems it becomes useful to know the frequency of memory ...

	the percentage of all memory accesses for data
	the percentage of data accesses that are reads
	the percentage of all memory accesses that are reads
	Ignore the size of a datum when counting accesses.
	2.11� [18] <2.8> Compute the effective CPI for DLX using Figure 2.26. Suppose we have made the fo...

	Instruction
	Clock cycles
	All ALU instructions
	1.0
	Loads-stores
	1.4
	Conditional branches
	 Taken
	2.0
	 Not taken
	1.5
	Jumps
	1.2
	Assume that 60% of the conditional branches are taken and that all instructions in the miscellane...
	2.12� [20/10] <2.3,2.8> Consider adding a new index addressing mode to DLX. The addressing mode a...

	Our compiler will be changed so that code sequences of the form
	ADD R1, R1, R2 LW Rd, 100(R1) (or store)
	will be replaced with a load (or store) using the new addressing mode. Use the overall �average i...
	a. [20] <2.3,2.8> Assume that the addressing mode can be used for 10% of the displacement loads a...
	b. [10] <2.3,2.8> If the new addressing mode lengthens the clock cycle by 5%, which machine will ...
	2.13� [25/15] <2.7> Find a C compiler and compile the code shown in Exercise�2.6 for one of the m...
	a. [25] <2.7> Find the instruction count, dynamic instruction bytes fetched, and data accesses do...
	b. [15] <2.7> Try to improve the code by hand and compute the same mea�sures as in part (a) for y...

	2.14� [30] <2.8> Small synthetic benchmarks can be very misleading when used for measuring instru...

	Compile Whetstone with optimization. Compute the instruction mix for the top 20 most frequently e...
	2.15� [30] <2.8> Follow the same guidelines as the prior exercise, but this time use Dhry�stone a...
	2.16� [30] <2.8> Many computer manufacturers now include tools or simulators that allow you to me...
	2.17� [30] <2.3,2.8> DLX has only three operand formats for its register-register operations. Man...
	2.18� [25] <App. C> How much do the instruction set variations among the RISC machines discussed ...

