Instruction Set
Principles and
Examples

An Add the number in storage locatininto the accumulator.

E n If the number in the accumulator is greater than or equal to
zero execute next the order which stands in storage location
otherwise proceed serially.

Z Stop the machine and ring the warning bell.

Wilkes and Renwick
Selection from the List of 18 Machine
Instructions for the EDSA(949)

2.1 Introduction 69

2.2 Classifying Instruction Set Architectures 70
2.3 Memory Addressing 73
2.4 Operations in the Instruction Set 80
2.5 Type and Size of Operands 85
2.6 Encoding an Instruction Set 87
2.7 Crosscutting Issues: The Role of Compilers 89
2.8 Putting It All Together: The DLX Architecture 96
2.9 Fallacies and Pitfalls 108
2.10 Concluding Remarks 111
2.11 Historical Perspective and References 112

Exercises 118

21 | Introduction

In this chapter we concentrate on instruction set architecture—the portion of the
machine visible to the programmer or compiler writer. This chapter introduces
the wide variety of design alternatives available to the instruction set architect. In
particular, this chapter focuses on four topics. First, we present a taxonomy of in-
struction set alternatives and give some qualitative assessment of the advantage
and disadvantages of various approaches. Second, we present and analyze sor
instruction set measurements that are largely independent of a specific instruction
set. Third, we address the issue of languages and compilers and their bearing or
instruction set architecture. Finally, tRatting It All Togethesection shows how
these ideas are reflected in the DLX instruction set, which is typical of recent in-
struction set architectures. The appendices add four examples of these recent ar
chitectures—MIPS, Power PC, Precision Architecture, SPARC—and one older
architecture, the 80x86. Before we discuss how to classify architectures, we need
to say something about instruction set measurement.

Throughout this chapter, we examine a wide variety of architectural measure-
ments. These measurements depend on the programs measured and on th

70

Chapter 2 Instruction Set Principles and Examples

compilers used in making the measurements. The results should not be inter-
preted as absolute, and you might see different data if you did the measurement
with a different compiler or a different set of programs. The authors believe that
the measurements shown in these chapters are reasonably indicative of a class of
typical applications. Many of the measurements are presented using a small set of
benchmarks, so that the data can be reasonably displayed and the differences
among programs can be seen. An architect for a new machine would want to ana-
lyze a much larger collection of programs to make his architectural decisions. All
the measurements shown atgnamie—that is, the frequency of a measured
event is weighed by the number of times that event occurs during execution of the
measured program.

We begin by exploring how instruction set architectures can be classified and
analyzed.

2.2 | Classifying Instruction Set Architectures

The type of internal storage in the CPU is the most basic differentiation, so in this
section we will focus on the alternatives for this portion of the architecture. The
major choices are a stack, an accumulator, or a set of registers. Operands may be
named explicitly or implicitly: The operands irstack architecturare implicitly

on the top of the stack, in @etcumulator architecturene operand is implicitly

the accumulator, andeneral-purpose register architecturégsve only explicit
operands—either registers or memory locations. The explicit operands may be
accessed directly from memory or may need to be first loaded into temporary
storage, depending on the class of instruction and choice of specific instruction.
Figure 2.1 shows how the code seque@iceA + B would typically appear on

these three classes of instruction sets. As Figure 2.1 shows, there are really two
classes of register machines. One can access memory as part of any instruction,
calledregister-memonarchitecture, and one can access memory only with load
and store instructions, calléolad-storeor register-registerarchitecture. A third

class, not found in machines shipping today, keeps all operands in memory and is
called anemory-memorgrchitecture.

Register Register
Stack Accumulator (register-memory) (load-store)
Push A Load A Load R1A Load R1A
PushB Add B Add R1,B Load R2,B
Add Store C Store C,R1 Add R3,R1,R2
Pop C Store C,R3
FIGURE 2.1 The code sequence for C = A + B for four instruction sets. It is assumed

that A, B, and C all belong in memory and that the values of A and B cannot be destroyed.

2.2 Classifying Instruction Set Architectures 71

Although most early machines used stack or accumulator-style architectures,
virtually every machine designed after 1980 uses a load-store register architec-
ture. The major reasons for the emergence of general-purpose register (GPR) ma
chines are twofold. First, registers—like other forms of storage internal to the
CPU—are faster than memory. Second, registers are easier for a compiler to use
and can be used more effectively than other forms of internal storage. For exam-
ple, on a register machine the expressiorB) — (C+D) — (ExF) may be eval-
uated by doing the multiplications in any order, which may be more efficient
because of the location of the operands or because of pipelining concerns (see
Chapter 3). But on a stack machine the expression must be evaluated left to right,
unless special operations or swaps of stack positions are done.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (since
registers are faster than memory), and the code density improves (since a registe
can be named with fewer bits than can a memory location). Compiler writers
would prefer that all registers be equivalent and unreserved. Older machines
compromise this desire by dedicating registers to special uses, effectively de-
creasing the number of general-purpose registers. If the number of truly general-
purpose registers is too small, trying to allocate variables to registers will not be
profitable. Instead, the compiler will reserve all the uncommitted registers for use
in expression evaluation.

How many registers are sufficient? The answer of course depends on how they
are used by the compiler. Most compilers reserve some registers for expression
evaluation, use some for parameter passing, and allow the remainder to be allo-
cated to hold variables.

Two major instruction set characteristics divide GPR architectures. Both char-
acteristics concern the nature of operands for a typical arithmetic or logical in-
struction (ALU instruction). The first concerns whether an ALU instruction has
two or three operands. In the three-operand format, the instruction contains a re-
sult and two source operands. In the two-operand format, one of the operands is
both a source and a result for the operation. The second distinction among GPR
architectures concerns how many of the operands may be memory addresses i
ALU instructions. The number of memory operands supported by a typical ALU
instruction may vary from none to three. Combinations of these two attributes are
shown in Figure 2.2, with examples of machines. Although there are seven possi-
ble combinations, three serve to classify nearly all existing machines. As we
mentioned earlier, these three are register-register (also called load-store), register.
memory, and memory-memory.

72 Chapter 2 Instruction Set Principles and Examples

Number of memory Maximum number of
addresses operands allowed Examples
0 3 SPARC, MIPS, Precision Architecture, PowerPC, ALPHA
1 2 Intel 80x86, Motorola 68000
2 2 VAX (also has three-operand formats)
3 3 VAX (also has two-operand formats)

FIGURE 2.2 Possible combinations of memory operands and total operands per typical ALU instruction with ex-

amples of machines. Machines with no memory reference per ALU instruction are called load-store or register-register
machines. Instructions with multiple memory operands per typical ALU instruction are called register-memory or memory-
memory, according to whether they have one or more than one memory operand.

The advantages and disadvantages of each of these alternatives are shown in
Figure 2.3. Of course, these advantages and disadvantages are not absolutes:
They are qualitative and their actual impact depends on the compiler and imple-
mentation strategy. A GPR machine with memory-memory operations can easily
be subsetted by the compiler and used as a register-register machine. One of the
most pervasive architectural impacts is on instruction encoding and the number
of instructions needed to perform a task.We will see the impact of these architec-
tural alternatives on implementation approaches in Chapters 3 and 4.

Type Advantages Disadvantages

Register- Simple, fixed-length instruction encoding. SimpleHigher instruction count than architectures with
register code-generation model. Instructions take similarmemory references in instructions. Some instruc-
(0,3) numbers of clocks to execute (see Ch 3). tions are short and bit encoding may be wasteful.
Register- Data can be accessed without loading first. Operands are not equivalent since a source oper-
memory Instruction format tends to be easy to encode anahd in a binary operation is destroyed. Encoding a
(1,2) yields good density. register number and a memory address in each

instruction may restrict the number of registers.
Clocks per instruction varies by operand location.

Memory- Most compact. Doesn’'t waste registers for Large variation in instruction size, especially far
memory temporaries. three-operand instructions. Also, large variation
(3,3) in work per instruction. Memory accesses credte

memory bottleneck.

FIGURE 2.3 Advantages and disadvantages of the three most common types of general-purpose register ma-
chines. The notation (m, n) means m memory operands and n total operands. In general, machines with fewer alternatives
make the compiler’s task simpler since there are fewer decisions for the compiler to make. Machines with a wide variety of
flexible instruction formats reduce the number of bits required to encode the program. A machine that uses a small number
of bits to encode the program is said to have good instruction density—a smaller number of bits do as much work as a larger
number on a different architecture. The number of registers also affects the instruction size.

2.3 Memory Addressing 73

Summary: Classifying Instruction Set Architectures

Here and in subsections at the end of sections 2.3 to 2.7 we summarize those
characteristics we would expect to find in a new instruction set architecture,
building the foundation for the DLX architecture introduced in section 2.8. From
this section we should clearly expect the use of general-purpose registers. Figure
2.3, combined with the following chapter on pipelining, lead to the expectation of
a register-register (also called load-store) architecture.

With the class of architecture covered, the next topic is addressing operands.

2.3 | Memory Addressing

Independent of whether the architecture is register-register or allows any operand
to be a memory reference, it must define how memory addresses are interpretec
and how they are specified. We deal with these two topics in this section. The

measurements presented here are largely, but not completely, machine indepen
dent. In some cases the measurements are significantly affected by the compiler
technology. These measurements have been made using an optimizing compiler
since compiler technology is playing an increasing role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as &
function of the address and the length? All the instruction sets discussed in this
book are byte addressed and provide access for bytes (8 bits), half words (16
bits), and words (32 bits). Most of the machines also provide access for double
words (64 bits).

There are two different conventions for ordering the bytes within a word.
Little Endian byte order puts the byte whose address is “x...x00" at the least-
significant position in the word (the little endig Endianbyte order puts the
byte whose address is “x...x00” at the most-significant position in the word (the
big end). In Big Endian addressing, the address of a datum is the address of the
most-significant byte; while in Little Endian, the address of a datum is the ad-
dress of the least-significant byte. When operating within one machine, the byte
order is often unnoticeable—only programs that access the same locations as
both words and bytes can notice the difference. Byte order is a problem when ex-
changing data among machines with different orderings, however. Little Endian
ordering also fails to match normal ordering of words when strings are compared.
Strings appear “SDRAWKCAB?” in the registers.

In many machines, accesses to objects larger than a byte nalisfneel An
access to an object of sizdbytes at byte addregsis aligned ifA mods =0.

Figure 2.4shows the addresses at which an access is aligned or misaligned.

74

Chapter 2 Instruction Set Principles and Examples

Object addressed Aligned at byte offsets Misaligned at byte offsets
Byte 0,1,2,3,4,5,6,7 Never

Half word 0,2,4,6 1,3,5,7

Word 0,4 1,2,3,5,6,7

Double word 0 1,2,3,4,5,6,7

FIGURE 2.4 Aligned and misaligned accesses of objects. The byte offsets are specified
for the low-order three bits of the address.

Why would someone design a machine with alignment restrictions? Misalign-
ment causes hardware complications, since the memory is typically aligned on a
word or double-word boundary. A misaligned memory access will, therefore,
take multiple aligned memory references.Thus, even in machines that allow mis-
aligned access, programs with aligned accesses run faster.

Even if data are aligned, supporting byte and half-word accesses requires an
alignment network to align bytes and half words in registers. Depending on the
instruction, the machine may also need to sign-extend the quantity. On some ma-
chines a byte or half word does not affect the upper portion of a register. For
stores only the affected bytes in memory may be altered. (Although all the ma-
chines discussed in this book permit byte and half-word accesses to memory,
only the Intel 80x86 supports ALU operations on register operands with a size
shorter than a word.)

Addressing Modes

We now know what bytes to access in memory given an address. In this sub-

section we will look at addressing modes—how architectures specify the address

of an object they will access. In GPR machines, an addressing mode can specify a
constant, a register, or a location in memory. When a memory location is used,

the actual memory address specified by the addressing mode is cakdéfedd¢he

tive address

Figure 2.5 shows all the data-addressing modes that have been used in recent
machines. Immediates or literals are usually considered memory-addressing
modes (even though the value they access is in the instruction stream), although
registers are often separated. We have kept addressing modes that depend on the
program counter, calledlC-relative addressingseparate. PC-relative addressing
is used primarily for specifying code addresses in control transfer instructions.
The use of PC-relative addressing in control instructions is discussed in section
2.4.

Figure 2.5 shows the most common names for the addressing modes, though
the names differ among architectures. In this figure and throughout the book, we
will use an extension of the C programming language as a hardware description
notation. In this figure, only one non-C feature is used: The left arrgus(used

2.3 Memory Addressing

75

Addressing
mode Example instruction Meaning When used
Register Add R4,R3 Regs[R4] — Regs[R4]+ When a value is in a register.
Regs[R3]
Immediate Add R4,#3 Regs[R4] — Regs[R4]+3 For constants.
Displacement Add R4,100(R1) Regs[R4] — Regs[R4]+ Accessing local variables.
Mem[100+Regs[R1]]
Register deferred Add R4,(R1) Regs[R4] — Regs[R4]+ Accessing using a pointer or a
or indirect Mem[Regs[R1]] computed address.
Indexed AddR3,(R1+R2) Regs[R3] ~ Regs[R3]+ Sometimes useful in array
Mem[Regs[R1]+Regs[R2]] addressingR1 = base of array;
R2 = index amount.
Direct or Add R1,(1001) Regs[R1] ~ Regs[R1]+ Sometimes useful for accessing
absolute Mem[1001] static data; address constant may
need to be large.
Memory indirect Add R1,@(R3) Regs[R1] ~ Regs[R1]+ If R3is the address of a pointe
or memory Mem[Mem[Regs[R3]]] p, then mode yieldsp.
deferred
Autoincrement Add R1,(R2)+ Regs[R1] ~Regs[R1]+ Useful for stepping through ar-
Mem[Regs[R2]] rays within a loopR2 points to
Regs[R2] —Regs[R2]+ d start of array; each reference in-
crementR2 by size of an ele-
ment,d.
Autodecrement Add R1,—+R2) Regs[R2] ~Regs[R2}- d Same use as autoincrement.
Regs[R1] ~ Regs[R1]+ Autodecrement/increment can
Mem[Regs[R2]] also act as push/pop to imple-
ment a stack.
Scaled Add Regs[R1] ~ Regs[R1]+ Used to index arrays. May be
R1,100(R2)[R3] Mem([100+Regs[R2]+Regs applied to any indexed address-
[R3]* d ing mode in some machines.

FIGURE 2.5 Selection of addressing modes with examples, meaning, and usage. The extensions to C used in the
hardware descriptions are defined above. In autoincrement/decrement and scaled addressing modes, the variable d desig-
nates the size of the data item being accessed (i.e., whether the instruction is accessing 1, 2, 4, or 8 bytes); this means that
these addressing modes are only useful when the elements being accessed are adjacent in memory. In our measurements,
we use the first name shown for each mode.

for assignment. We also use the ailvlgmas the name for main memory and the ar-

ray Regs for registers. Thudviem[Regs[R1]] refers to the contents of the mem-

ory location whose address is given by the contents of regis¥d).1Later, we will

introduce extensions for accessing and transferring data smaller than a word.
Addressing modes have the ability to significantly reduce instruction counts;

they also add to the complexity of building a machine and may increase the aver-

age CPI (clock cycles per instruction) of machines that implement those modes.

76

Chapter 2 Instruction Set Principles and Examples

Thus, the usage of various addressing modes is quite important in helping the ar-
chitect choose what to include.

Figure 2.6 shows the results of measuring addressing mode usage patterns in
three programs on the VAX architecture. We use the VAX architecture for a few
measurements in this chapter because it has the fewest restrictions on memory
addressing. For example, it supports all the modes shown in Figure 2.5. Most
measurements in this chapter, however, will use the more recent load-store archi-
tectures to show how programs use instruction sets of current machines.

As Figure 2.6 shows, immediate and displacement addressing dominate ad-
dressing mode usage. Let's look at some properties of these two heavily used
modes.

TeX 1%
Memory indirect spice 6%
gcc | 1%
TeX |[0%
Scaled spice 16%
gce Il 6%
TeX 24%
Register deferred spice 3%
gec N 11%
TeX 43%
Immediate spice 17%
gec [39%
TeX 32%
Displacement gpjce 55%
e ——— .
0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).

The data were taken on a VAX using three programs from SPEC89. Only the addressing
modes with an average frequency of over 1% are shown. The PC-relative addressing modes,
which are used almost exclusively for branches, are not included. Displacement mode in-
cludes all displacement lengths (8, 16, and 32 bit). Register modes, which are not counted,
account for one-half of the operand references, while memory addressing modes (including
immediate) account for the other half. The memory indirect mode on the VAX can use dis-
placement, autoincrement, or autodecrement to form the initial memory address; in these
programs, almost all the memory indirect references use displacement mode as the base. Of
course, the compiler affects what addressing modes are used; we discuss this further in sec-
tion 2.7. These major addressing modes account for all but a few percent (0% to 3%) of the
memory accesses.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is that of
the range of displacements used. Based on the use of various displacement sizes,
a decision of what sizes to support can be made. Choosing the displacement field

2.3 Memory Addressing 77

sizes is important because they directly affect the instruction length. Measure-
ments taken on the data access on a load-store architecture using our benchmar
programs are shown in Figure 2.7. We will look at branch offsets in the next sec-
tion—data accessing patterns and branches are so different, little is gained by
combining them.

3000 [

AT/ i AR

Floating-point average g

20%
Percentage of
displacement

15%

10%

5%

0%

Number of bits needed for a displacement value

FIGURE 2.7 Displacement values are widely distributed. The x axis is log, of the displacement; that is, the size of a
field needed to represent the magnitude of the displacement. These data were taken on the MIPS architecture, showing the
average of five programs from SPECint92 (compress, espresso, egntott, gcc, li) and the average of five programs from
SPECfp92 (dudoc, ear, hydro2d, mdljdp2, su2cor). Although there are a large number of small values in this data, there are
also a fair number of large values. The wide distribution of displacement values is due to multiple storage areas for variables
and different displacements used to access them. The different storage areas and their access patterns are discussed fur-
ther in section 2.7. The graph shows only the magnitude of the displacement and not the sign, which is heavily affected by
the storage layout. The entry corresponding to 0 on the x axis shows the percentage of displacements of value 0. The vast
majority of the displacements are positive, but a majority of the largest displacements (14+ bits) are negative. Again, this is
due to the overall addressing scheme used by the compiler and might change with a different compilation scheme. Since
this data was collected on a machine with 16-bit displacements, it cannot tell us anything about accesses that might want to
use a longer displacement. Such accesses are broken into two separate instructions—the first of which loads the upper 16
bits of a base register. By counting the frequency of these “load high immediate” instructions, which have limited use for
other purposes, we can bound the number of accesses with displacements potentially larger than 16 bits. Such an analysis
indicates that we may actually require a displacement longer than 16 bits for about 1% of immediates on SPECint92 and
1% of those for SPECfp92. Relating this data to the graph above, if it were widened to 32 bits we would see 1% of immedi-
ates collectively between sizes 16 and 31 for both SPECint92 and SPECfp92. And if the displacement is larger than 15 bits,
it is likely to be quite a bit larger since such constants are large, as shown in Figure 2.9 on page 79.To evaluate the choice
of displacement length, we might also want to examine a cumulative distribution, as shown in Exercise 2.1 (see Figure 2.32
on page 119). In summary, 12 bits of displacement would capture about 75% of the full 32-bit displacements and 16 bits
should capture about 99%.

78

Chapter 2 Instruction Set Principles and Examples

Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves where a constant is wanted in a register. The last case oc-
curs for constants written in the code, which tend to be small, and for address
constants, which can be large. For the use of immediates it is important to know
whether they need to be supported for all operations or for only a subset. The
chart in Figure 2.8 shows the frequency of immediates for the general classes of
integer operations in an instruction set.

Loads 10%
45%

Compares 87%
77%

ALU operations 58%
78%

All instructions 35%
10%

0% 50% 100%
Percentage of operations that use immediates

o Integer average m Floating-point average

FIGURE 2.8 We see that for ALU operations about one-half to three-quarters of the
operations have an immediate operand, while 75% to 85% of compare operations use

an immediate operation. (For ALU operations, shifts by a constant amount are included as
operations with immediate operands.) For loads, the load immediate instructions load 16 bits
into either half of a 32-bit register. These load immediates are not loads in a strict sense be-
cause they do not reference memory. In some cases, a pair of load immediates may be used
to load a 32-bit constant, but this is rare. The compares include comparisons against zero
that are done in conditional branches based on this comparison. These measurements were
taken on the DLX architecture with full compiler optimization (see section 2.7). The compiler
attempts to use simple compares against zero for branches whenever possible, because
these branches are efficiently supported in the architecture. Note that the bottom bars show
that integer programs use immediates in about one-third of the instructions, while floating-
point programs use immediates in about one-tenth of the instructions. Floating-point pro-
grams have many data transfers and operations on floating-point data that do not have im-
mediate forms in the DLX instruction set. (These percentages are the averages of the same 10
programs as in Figure 2.7 on page 77.)

Another important instruction set measurement is the range of values for im-
mediates. Like displacement values, the sizes of immediate values affect instruc-
tion lengths. As Figure 2.9 shows, immediate values that are small are most
heavily used. Large immediates are sometimes used, however, most likely in ad-
dressing calculations. The data in Figure 2.9 were taken on a VAX because, un-

2.3 Memory Addressing 79

like recent load-store architectures, it supports 32-bit long immediates. For these
measurements the VAX has the drawback that many of its instructions have zero
as an implicit operand. These include instructions to compare against zero and to
store zero into a word. Because of the use of these instructions, the measurement
show less frequent use of zero than on architectures without such instructions.

60%

50% | gee

40%

30%

20%

10%

0%

0 4 8 12 16 20 24 28 32
Number of bits needed for an immediate value

FIGURE 2.9 The distribution of immediate values is shown. The x axis shows the num-
ber of bits needed to represent the magnitude of an immediate value—0 means the immedi-
ate field value was 0. The vast majority of the immediate values are positive: Overall, less
than 6% of the immediates are negative.These measurements were taken on a VAX, which
supports a full range of immediates and sizes as operands to any instruction. The measured
programs are gcc, spice, and TeX. Note that 50% to 70% of the immediates fit within 8 bits
and 75% to 80% fit within 16 bits.

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to support
at least the following addressing modes: displacement, immediate, and register
deferred. Figure 2.6 on page 76 shows they represent 75% to 99% of the address
ing modes used in our measurements. Second, we would expect the size of the
address for displacement mode to be at least 12 to 16 bits, since the caption in
Figure 2.7 on page 77 suggests these sizes would capture 75% to 99% of the dis
placements. Third, we would expect the size of the immediate field to be at least
8 to 16 bits. As the caption in Figure 2.9 suggests, these sizes would capture 50%
to 80% of the immediates.

80

Chapter 2 Instruction Set Principles and Examples

Operator type

Examples

Arithmetic and logical

Integer arithmetic and logical operations: add, and, subtract, or

Data transfer

Loads-stores (move instructions on machines with memory addressing)

Control

Branch, jump, procedure call and return, traps

System

Operating system call, virtual memory management instructions

Floating point

Floating-point operations: add, multiply

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel operations, compression/decompression operations
FIGURE 2.10 Categories of instruction operators and examples of each. All machines generally provide a full set of

operations for the first three categories. The support for system functions in the instruction set varies widely among archi-
tectures, but all machines must have some instruction support for basic system functions. The amount of support in the in-
struction set for the last four categories may vary from none to an extensive set of special instructions. Floating-point
instructions will be provided in any machine that is intended for use in an application that makes much use of floating point.
These instructions are sometimes part of an optional instruction set. Decimal and string instructions are sometimes primi-
tives, as in the VAX or the IBM 360, or may be synthesized by the compiler from simpler instructions. Graphics instructions
typically operate on many smaller data items in parallel; for example, performing eight 8-bit additions on two 64-bit operands.

2.4 | Operations in the Instruction Set

The operators supported by most instruction set architectures can be categorized,
as in Figure 2.10. One rule of thumb across all architectures is that the most
widely executed instructions are the simple operations of an instruction set. For
example, Figure 2.11 shows 10 simple instructions that account for 96% of in-
structions executed for a collection of integer programs running on the popular
Intel 80x86. Hence the implementor of these instructions should be sure to make
these fast, as they are the common case.

Because the measurements of branch and jump behavior are fairly indepen-
dent of other measurements, we examine the use of control-flow instructions
next.

Instructions for Control Flow

There is no consistent terminology for instructions that change the flow of con-
trol. In the 1950s they were typically callé@nsfers Beginning in 1960 the
namebranch began to be used. Later, machines introduced additional names.
Throughout this book we will ugamp when the change in control is uncondi-
tional andoranchwhen the change is conditional.

2.4 Operations in the Instruction Set 81

Integer average

Rank 80x86 instruction (% total executed)
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%

FIGURE 2.11 The top 10 instructions for the 80x86. These percent-
ages are the average of the same five SPECint92 programs as in
Figure 2.7 on page 77.

We can distinguish four different types of control-flow change:
1. Conditional branches

2. Jumps

3. Procedure calls

4. Procedure returns

We want to know the relative frequency of these events, as each event is different,
may use different instructions, and may have different behavior. The frequencies
of these control-flow instructions for a load-store machine running our bench-
marks are shown in Figure 2.12.

Call/return 13%
11%

Jump 406/%
0

81%

Conditional branch 86%

0% 50% 100%

Frequency of branch classes

o Integer average @ Floating-point average

FIGURE 2.12 Breakdown of control flow instructions into three classes: calls or re-

turns, jumps, and conditional branches. Each type is counted in one of three bars. Con-
ditional branches clearly dominate. The programs and machine used to collect these
statistics are the same as those in Figure 2.7.

82

Chapter 2 Instruction Set Principles and Examples

The destination address of a control flow instruction must always be specified.
This destination is specified explicitly in the instruction in the vast majority of
cases—procedure return being the major exception—since for return the target is
not known at compile time. The most common way to specify the destination is to
supply a displacement that is added toptegram counteror PC. Control flow
instructions of this sort are call®C-relative PC-relative branches or jumps are
advantageous because the target is often near the current instruction, and specify-
ing the position relative to the current PC requires fewer bits. Using PC-relative
addressing also permits the code to run independently of where it is loaded. This
property, callecposition independencean eliminate some work when the pro-
gram is linked and is also useful in programs linked during execution.

To implement returns and indirect jumps in which the target is not known at
compile time, a method other than PC-relative addressing is required. Here, there
must be a way to specify the target dynamically, so that it can change at runtime.
This dynamic address may be as simple as nhaming a register that contains the tar-
get address; alternatively, the jump may permit any addressing mode to be used
to supply the target address.These register indirect jumps are also useful for three
other important featuresaseor switch statements found in many programming
languages (which select among one of several alternatiygsgmically shared
libraries (which allow a library to be loaded only when it is actually invoked by
the program), andirtual functionsin object-oriented languages like C++ (which
allow different routines to be called depending on the type of the data). In all
three cases the target address is not known at compile time, and hence is usually
loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targets, a
key question concerns how far branch targets are from branches. Knowing the
distribution of these displacements will help in choosing what branch offsets to
support and thus will affect the instruction length and encoding. Figure 2.13
shows the distribution of displacements for PC-relative branches in instructions.
About 75% of the branches are in the forward direction.

Since most changes in control flow are branches, deciding how to specify the
branch condition is important. The three primary techniques in use and their ad-
vantages and disadvantages are shown in Figure 2.14.

One of the most noticeable properties of branches is that a large number of the
comparisons are simple equality or inequality tests, and a large number are com-
parisons with zero. Thus, some architectures choose to treat these comparisons as
special cases, especially itampare and brancmstruction is being used. Fig-
ure 2.15 shows the frequency of different comparisons used for conditional
branching. The data in Figure 2.8 said that a large percentage of the comparisons
had an immediate operand, and while not shown, 0 was the most heavily used im-
mediate. When we combine this with the data in Figure 2.15, we can see that a
significant percentage (over 50%) of the integer compares in branches are simple
tests for equality with 0.

2.4 Operations in the Instruction Set 83

40%
35%
30%
25%
20%
15%
10%

5%

0% §
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits of branch displacement

FIGURE 2.13 Branch distances in terms of number of instructions between the target

and the branch instruction. The most frequent branches in the integer programs are to tar-
gets that are four to seven instructions away. This tells us that short displacement fields often
suffice for branches and that the designer can gain some encoding density by having a short-
er instruction with a smaller branch displacement. These measurements were taken on a
load-store machine (DLX architecture). An architecture that requires fewer instructions for the
same program, such as a VAX, would have shorter branch distances. Similarly, the number
of bits needed for the displacement may change if the machine allows instructions to be ar-
bitrarily aligned. A cumulative distribution of this branch displacement data is shown in Exer-
cise 2.1 (see Figure 2.32 on page 119). The programs and machine used to collect these
statistics are the same as those in Figure 2.7.

Name How condition is tested Advantages Disadvantages

Condition Special bits are set by ALU opera- Sometimes condition CC is extra state. Condition codes

code (CC) tions, possibly under program is set for free. constrain the ordering of instruc-
control. tions since they pass information

from one instruction to a branch.

Condition Test arbitrary register with the result Simple. Uses up a register.

register of a comparison.

Compareand Compare is part of the branch. OftenOne instruction rather May be too much work per

branch compare is limited to subset. than two for a branch. instruction.

FIGURE 2.14 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on programs
show that this rarely happens. The major implementation problems with condition codes arise when the condition code is
set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the instruction. Ma-
chines with compare and branch often limit the set of compares and use a condition register for more complex compares.
Often, different techniques are used for branches based on floating-point comparison versus those based on integer com-
parison. This is reasonable since the number of branches that depend on floating-point comparisons is much smaller than
the number depending on integer comparisons.

Procedure calls and returns include control transfer and possibly some state
saving; at a minimum the return address must be saved somewhere. Some archi

Chapter 2 Instruction Set Principles and Examples

Less than/ greater than or 7%

equal 40%
Greater than/ less than or 7%

equal 23%
86%
Equal/ not equal 37%

0% 50% 100%

Frequency of comparison types in branches

o Integer average @ Floating-point average

FIGURE 2.15 Frequency of different types of compares in conditional branches. This
includes both the integer and floating-point compares in branches. Remember that earlier
data in Figure 2.8 indicate that most integer comparisons are against an immediate operand.
The programs and machine used to collect these statistics are the same as those in
Figure 2.7.

tectures provide a mechanism to save the registers, while others require the com-
piler to generate instructions. There are two basic conventions in use to save
registersCaller savingmeans that the calling procedure must save the registers
that it wants preserved for access after the CGalllee savingmeans that the
called procedure must save the registers it wants to use. There are times when
caller save must be used because of access patterns to globally visible variables
in two different procedures. For example, suppose we have a procedure P1 that
calls procedure P2, and both procedures manipulate the global vari#fbRl

had allocatec to a register it must be sure to sav® a location known by P2
before the call to P2. A compiler’s ability to discover when a called procedure
may access register-allocated quantities is complicated by the possibility of sepa-
rate compilation and situations where P2 may not toubhit can call another
procedure, P3, that may acces8ecause of these complications, most compil-

ers will conservatively caller saxany variable that may be accessed during a
call.

In the cases where either convention could be used, some programs will be
more optimal with callee save and some will be more optimal with caller save. As
a result, the most sophisticated compilers use a combination of the two mecha-
nisms, and the register allocator may choose which register to use for a variable
based on the convention. Later in this chapter we will examine the mismatch be-
tween sophisticated instructions for automatically saving registers and the needs
of the compiler.

2.5 Type and Size of Operands 85

Summary: Operations in the Instruction Set

From this section we see the importance and popularity of simple instructions:

load, store, add, subtract, move register-register, and, shift, compare equal, com-
pare not equal, branch, jump, call, and return. Although there are many options
for conditional branches, we would expect branch addressing in a new architec-
ture to be able to jump to about 100 instructions either above or below the branch,
implying a PC-relative branch displacement of at least 8 bits. We would also ex-

pect to see register-indirect and PC-relative addressing for jump instructions to

support returns as well as many other features of current systems.

2.5 | Type and Size of Operands

How is the type of an operand designated? There are two primary alternatives:
First, the type of an operand may be designated by encoding it in the opcode—
this is the method used most often. Alternatively, the data can be annotated with
tags that are interpreted by the hardware. These tags specify the type of the oper
and, and the operation is chosen accordingly. Machines with tagged data, howev-
er, can only be found in computer museums.

Usually the type of an operand—for example, integer, single-precision float-
ing point, character—effectively gives its size. Common operand types include
character (1 byte), half word (16 bits), word (32 bits), single-precision floating
point (also 1 word), and double-precision floating point (2 words). Characters are
almost always in ASCII and integers are almost universally represented as two’s
complement binary numbers. Until the early 1980s, most computer manufactur-
ers chose their own floating-point representation. Almost all machines since that
time follow the same standard for floating point, the IEEE standard 754. The
IEEE floating-point standard is discussed in detail in Appendix A.

Some architectures provide operations on character strings, although such op-
erations are usually quite limited and treat each byte in the string as a single char-
acter. Typical operations supported on character strings are comparisons and
moves.

For business applications, some architectures support a decimal format, usu-
ally calledpacked decimabr binary-coded decimat4 bits are used to encode
the values 0-9, and 2 decimal digits are packed into each byte. Numeric charactel
strings are sometimes calledpacked decimahnd operations—calleglacking
and unpacking—are usually provided for converting back and forth between
them.

Our benchmarks use byte or character, half word (short integer), word (inte-
ger), and floating-point data types. Figure 2.16 shows the dynamic distribution of
the sizes of objects referenced from memory for these programs. The frequency
of access to different data types helps in deciding what types are most important
to support efficiently. Should the machine have a 64-bit access path, or would

86

Chapter 2 Instruction Set Principles and Examples

taking two cycles to access a double word be satisfactory? How important is it to
support byte accesses as primitives, which, as we saw earlier, require an alignment
network? In Figure 2.16, memory references are used to examine the types of data
being accessed. In some architectures, objects in registers may be accessed as
bytes or half words. However, such access is very infrequent—on the VAX, it ac-
counts for no more than 12% of register references, or roughly 6% of all operand
accesses in these programs. The successor to the VAX not only removed opera-
tions on data smaller than 32 bits, it also removed data transfers on these smaller
sizes: The first implementations of the Alpha required multiple instructions to read

or write bytes or half words.

Note that Figure 2.16 was measured on a machine with 32-bit addresses: On a
64-bit address machine the 32-bit addresses would be replaced by 64-bit address-
es. Hence as 64-bit address architectures become more popular, we would expect
that double-word accesses will be popular for integer programs as well as float-
ing-point programs.

Double word | 0%
69%
Word 74%
31%
Half word 19%
0%
Byte 7%
0%
0% 20% 40% 60% 80%

Frequency of reference by size

o Integer average @ Floating-point average

FIGURE 2.16 Distribution of data accesses by size for the benchmark programs. Ac-
cess to the major data type (word or double word) clearly dominates each type of program.
Half words are more popular than bytes because one of the five SPECint92 programs (eqn-
tott) uses half words as the primary data type, and hence they are responsible for 87% of the
data accesses (see Figure 2.31 on page 110). The double-word data type is used solely for
double-precision floating-point in floating-point programs. These measurements were taken
on the memory traffic generated on a 32-bit load-store architecture.

Summary: Type and Size of Operands

From this section we would expect a new 32-bit architecture to support 8-, 16-,
and 32-bit integers and 64-bit IEEE 754 floating-point data; a new 64-bit address
architecture would need to support 64-bit integers as well. The level of support
for decimal data is less clear, and it is a function of the intended use of the ma-
chine as well as the effectiveness of the decimal support.

2.6 Encoding an Instruction Set 87

2.6 | Encoding an Instruction Set

Clearly the choices mentioned above will affect how the instructions are encoded
into a binary representation for execution by the CPU. This representation affects
not only the size of the compiled program, it affects the implementation of the
CPU, which must decode this representation to quickly find the operation and its
operands. The operation is typically specified in one field, calledptb@de As

we shall see, the important decision is how to encode the addressing modes with
the operations.

This decision depends on the range of addressing modes and the degree of in
dependence between opcodes and modes. Some machines have one to five ope
ands with 10 addressing modes for each operand (see Figure 2.5 on page 75). Fo
such a large number of combinations, typically a sepaddeess specifieis
needed for each operand: the address specifier tells what addressing mode is use
to access the operand. At the other extreme is a load-store machine with only one
memory operand and only one or two addressing modes; obviously, in this case,
the addressing mode can be encoded as part of the opcode.

When encoding the instructions, the number of registers and the number of ad-
dressing modes both have a significant impact on the size of instructions, since the
addressing mode field and the register field may appear many times in a single in-
struction. In fact, for most instructions many more bits are consumed in encoding
addressing modes and register fields than in specifying the opcode. The architect
must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the aver-
age instruction size and hence on the average program size.

3. Adesire to have instructions encode into lengths that will be easy to handle in
the implementation. As a minimum, the architect wants instructions to be in
multiples of bytes, rather than an arbitrary length. Many architects have cho-
sen to use a fixed-length instruction to gain implementation benefits while sac-
rificing average code size.

Since the addressing modes and register fields make up such a large percent
age of the instruction bits, their encoding will significantly affect how easy it is
for an implementation to decode the instructions. The importance of having easi-
ly decoded instructions is discussed in Chapter 3.

Figure 2.17 shows three popular choices for encoding the instruction set. The
first we callvariable since it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera
tions. The second choice we chi¥ed since it combines the operation and the

88

Chapter 2 Instruction Set Principles and Examples

Operation & Address Address Address Address
no. of operands | specifier 1 field 1 specifier n field n

(a) Variable (e.g., VAX)

Operation Address Address Address
field 1 field 2 field 3

(b) Fixed (e.g., DLX, MIPS, Power PC, Precision Architecture, SPARC)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/70, Intel 80x86)

FIGURE 2.17 Three basic variations in instruction encoding. The variable format can
support any number of operands, with each address specifier determining the addressing
mode for that operand. The fixed format always has the same number of operands, with the
addressing modes (if options exist) specified as part of the opcode (see also Figure C.3 on
page C-4). Although the fields tend not to vary in their location, they will be used for different
purposes by different instructions. The hybrid approach will have multiple formats specified
by the opcode, adding one or two fields to specify the addressing mode and one or two fields
to specify the operand address (see also Figure D.7 on page D-12).

addressing mode into the opcode. Often fixed encoding will have only a single
size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size of
programs versus ease of decoding in the CPU. Variable tries to use as few bits as
possible to represent the program, but individual instructions can vary widely in
both size and the amount of work to be performed. For example, the VAX integer
add can vary in size between 3 and 19 bytes and vary between 0 and 6 in data
memory references. Given these two poles of instruction set design, the third al-
ternative immediately springs to mind: Reduce the variability in size and work of
the variable architecture but provide multiple instruction lengths so as to reduce
code size. Thilybrid approach is the third encoding alternative.

2.7 Crosscutting Issues: The Role of Compilers 89

To make these general classes more specific, this book contains several exam
ples. Fixed formats of five machines can be seen in Figure C.3 on page C-4 and
the hybrid formats of the Intel 80x86 can be seen in Figure D.8 on page D-13.

Let’s look at a VAX instruction to see an example of the variable encoding:

addI3 r1,737(r2),(r3)

The nameddi3 means a 32-bit integer add instruction with three operands, and
this opcode takes 1 byte. A VAX address specifier is 1 byte, generally with the
first 4 bits specifying the addressing mode and the second 4 bits specifying the
register used in that addressing mode. The first operand specifierirdicates
register addressing using register 1, and this specifier is 1 byte long. The second
operand specifier#37(r2) —indicates displacement addressing. It has two
parts: The first part is a byte that specifies the 16-bit indexed addressing mode
and base register2(); the second part is the 2-byte-long displaceni&T)(The

third operand specifier—3)—specifies register indirect addressing mode using
register 3. Thus, this instruction has two data memory accesses, and the total
length of the instruction is

1+(1)+(1+2) + (1) = 6 bytes

The length of VAX instructions varies between 1 and 53 bytes.

Summary: Encoding the Instruction Set

Decisions made in the components of instruction set design discussed in prior
sections determine whether or not the architect has the choice between variable
and fixed instruction encodings. Given the choice, the architect more interested in
code size than performance will pick variable encoding, and the one more inter-
ested in performance than code size will pick fixed encoding. In Chapters 3 and
4, the impact of variability on performance of the CPU will be discussed further.

We have almost finished laying the groundwork for the DLX instruction set
architecture that will be introduced in section 2.8. But before we do that, it will
be helpful to take a brief look at recent compiler technology and its effect on pro-
gram properties.

2.7 | Crosscutting Issues: The Role of Compilers

Today almost all programming is done in high-level languages. This develop-
ment means that since most instructions executed are the output of a compiler, ar
instruction set architecture is essentially a compiler target. In earlier times, archi-
tectural decisions were often made to ease assembly language programming. Be
cause performance of a computer will be significantly affected by the compiler,
understanding compiler technology today is critical to designing and efficiently
implementing an instruction set. In earlier days it was popular to try to isolate the

Chapter 2 Instruction Set Principles and Examples

compiler technology and its effect on hardware performance from the architec-
ture and its performance, just as it was popular to try to separate an architecture
from its implementation. This separation is essentially impossible with today’s
compilers and machines. Architectural choices affect the quality of the code that
can be generated for a machine and the complexity of building a good compiler
for it. Isolating the compiler from the hardware is likely to be misleading. In this
section we will discuss the critical goals in the instruction set primarily from the
compiler viewpoint. What features will lead to high-quality code? What makes it
easy to write efficient compilers for an architecture?

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. The structure of
recent compilers is shown in Figure 2.18.

Dependencies Function

Language dependent; Transform language to
machine independent common intermediate form

ront-end per
language

Intermediate
representation

Somewhat language dependent,
largely machine independent

For example, procedure inlining
and loop transformations

High-level
optimizations

Small language dependencies; Including global and local
machine dependencies slight Global optimizations + register
(e.g., register counts/types) optimizer allocation

Highly machine dependent; Detailed instruction selection
language independent Code generator ; . and machine-dependent
optimizations; may include

or be followed by assembler

FIGURE 2.18 Current compilers typically consist of two to four passes, with more
highly optimizing compilers having more passes. A pass is simply one phase in which
the compiler reads and transforms the entire program. (The term phase is often used inter-
changeably with pass.) The optimizing passes are designed to be optional and may be
skipped when faster compilation is the goal and lower quality code is acceptable. This struc-
ture maximizes the probability that a program compiled at various levels of optimization will
produce the same output when given the same input. Because the optimizing passes are also
separated, multiple languages can use the same optimizing and code-generation passes.
Only a new front end is required for a new language. The high-level optimization mentioned
here, procedure inlining, is also called procedure integration.

2.7 Crosscutting Issues: The Role of Compilers 91

A compiler writer’s first goal is correctness—all valid programs must be com-
piled correctly. The second goal is usually speed of the compiled code. Typically,
a whole set of other goals follows these two, including fast compilation, debug-
ging support, and interoperability among languages. Normally, the passes in the
compiler transform higher-level, more abstract representations into progressively
lower-level representations, eventually reaching the instruction set. This structure
helps manage the complexity of the transformations and makes writing a bug-
free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order and
perform some transformations before others. In the diagram of the optimizing
compiler in Figure 2.18, we can see that certain high-level optimizations are per-
formed long before it is known what the resulting code will look like in detalil.
Once such a transformation is made, the compiler can’t afford to go back and re-
visit all steps, possibly undoing transformations. This would be prohibitive, both
in compilation time and in complexity. Thus, compilers make assumptions about
the ability of later steps to deal with certain problems. For example, compilers
usually have to choose which procedure calls to expand inline before they know
the exact size of the procedure being called. Compiler writers call this problem
thephase-orderingroblem

How does this ordering of transformations interact with the instruction set ar-
chitecture? A good example occurs with the optimization cglleal common
subexpression eliminatiofhis optimization finds two instances of an expression
that compute the same value and saves the value of the first computation in a
temporary. It then uses the temporary value, eliminating the second computation
of the expression. For this optimization to be significant, the temporary must be
allocated to a register. Otherwise, the cost of storing the temporary in memory
and later reloading it may negate the savings gained by not recomputing the ex-
pression. There are, in fact, cases where this optimization actually slows down
code when the temporary is not register allocated. Phase ordering complicates
this problem, because register allocation is typically done near the end of the glo-
bal optimization pass, just before code generation. Thus, an optimizer that per-
forms this optimizatiormustassume that the register allocator will allocate the
temporary to a register.

Optimizations performed by modern compilers can be classified by the style
of the transformation, as follows:

1. High-level optimizationsire often done on the source with output fed to later
optimization passes.

2. Local optimization®ptimize code only within a straight-line code fragment
(called abasic blockby compiler people).

92

Chapter 2 Instruction Set Principles and Examples

3. Global optimizationgxtend the local optimizations across branches and intro-
duce a set of transformations aimed at optimizing loops.

4. Register allocation

5. Machine-dependent optimizatioagempt to take advantage of specific archi-
tectural knowledge.

Because of the central role that register allocation plays, both in speeding up
the code and in making other optimizations useful, it is one of the most impor-
tant—if not the most important—optimizations. Recent register allocation algo-
rithms are based on a technique caligaph coloring The basic idea behind
graph coloring is to construct a graph representing the possible candidates for al-
location to a register and then to use the graph to allocate registers. Although the
problem of coloring a graph is NP-complete, there are heuristic algorithms that
work well in practice.

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables and
additional registers for floating point. Unfortunately, graph coloring does not
work very well when the number of registers is small because the heuristic algo-
rithms for coloring the graph are likely to fail. The emphasis in the approach is to
achieve 100% allocation of active variables.

It is sometimes difficult to separate some of the simpler optimizations—Ilocal
and machine-dependent optimizations—from transformations done in the code
generator. Examples of typical optimizations are given in Figure 2.19. The last
column of Figure 2.19 indicates the frequency with which the listed optimizing
transforms were applied to the source program. The effect of various optimiza-
tions on instructions executed for two programs is shown in Figure 2.20.

The Impact of Compiler Technology on the Architect’s
Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set architecture. There are two important questions:
How are variables allocated and addressed? How many registers are needed to al-
locate variables appropriately? To address these questions, we must look at the
three separate areas in which current high-level languages allocate their data:

« Thestackis used to allocate local variables. The stack is grown and shrunk on
procedure call or return, respectively. Objects on the stack are addressed rela-
tive to the stack pointer and are primarily scalars (single variables) rather than
arrays. The stack is used for activation recardsas a stack for evaluating ex-
pressions. Hence values are almost never pushed or popped on the stack.

2.7 Crosscutting Issues: The Role of Compilers 93

Percentage of the total num-

Optimization name Explanation ber of optimizing transforms

High-level At or near the source level; machine-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression elimination Replace two instances of the same 18%
computation by single copy

Constant propagation Replace all instances of a variable that 22%
is assigned a constant with the constant

Stack height reduction Rearrange expression tree to minimize re- N.M.
sources needed for expression evaluation

Global Across a branch

Global common subexpression Same as local, but this version crosses 13%

elimination branches

Copy propagation Replace all instances of a variatileat 11%
has been assigned(i.e.,A = X) with X

Code motion Remove code from a loop that computes 16%
same value each iteration of the loop

Induction variable elimination Simplify/eliminate array-addressing 2%
calculations within loops

Machine-dependent Depends on machine knowledge

Strength reduction Many examples, such as replace multiply N.M.
by a constant with adds and shifts

Pipeline scheduling Reorder instructions to improve pipeline N.M.
performance

Branch offset optimization Choose the shortest branch displacement N.M.

that reaches target

FIGURE 2.19 Major types of optimizations and examples in each class. The third column lists the static frequency with
which some of the common optimizations are applied in a set of 12 small FORTRAN and Pascal programs. The percentage
is the portion of the static optimizations that are of the specified type. These data tell us about the relative frequency of oc-
currence of various optimizations. There are nine local and global optimizations done by the compiler included in the mea-
surement. Six of these optimizations are covered in the figure, and the remaining three account for 18% of the total static
occurrences. The abbreviation N.M. means that the number of occurrences of that optimization was not measured. Machine-
dependent optimizations are usually done in a code generator, and none of those was measured in this experiment. Data
from Chow [1983] (collected using the Stanford UCODE compiler).

« Theglobal data areads used to allocate statically declared objects, such as glo-
bal variables and constants. A large percentage of these objects are arrays o
other aggregate data structures.

« Theheapis used to allocate dynamic objects that do not adhere to a stack dis-
cipline. Objects in the heap are accessed with pointers and are typically not
scalars.

94

Chapter 2 Instruction Set Principles and Examples

Program and compiler
optimization level

hydro I 3
hydro | 2
hydro | 1
hydro | 0 i, 1 00%
lilevel 3
li level 2

lilevel 1 89%

li level O 100%

0% 20% 40% 60% 80% 100%
Percent of unoptimized instructions executed

m Branches/calls © FLOPs m Loads-stores m Integer ALU

FIGURE 2.20 Change in instruction count for the programs hydro2d and li from the SPEC92 as compiler optimi-

zation levels vary. Level O is the same as unoptimized code. These experiments were perfomed on the MIPS compilers.
Level 1 includes local optimizations, code scheduling, and local register allocation. Level 2 includes global optimizations,
loop transformations (software pipelining), and global register allocation. Level 3 adds procedure integration.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap-allocated
objects because they are accessed with pointers. Global variables and some stack
variables are impossible to allocate because thewnlm®ed which means that
there are multiple ways to refer to the address of a variable, making it illegal to put
it into a register. (Most heap variables are effectively aliased for today’s compiler
technology.) For example, consider the following code sequence, &heterns
the address of a variable andereferences a pointer:

p=_&a —gets address of ain p
a=.. — assigns to a directly
*P= .. —uses ptoassignto a
il -- accesses a

The variablea could not be register allocated across the assignmemt vath-

out generating incorrect code. Aliasing causes a substantial problem because it is
often difficult or impossible to decide what objects a pointer may refer to. A
compiler must be conservative; many compilers will not alloaatdocal vari-

ables of a procedure in a register when there is a pointer that may referato

the local variables.

2.7 Crosscutting Issues: The Role of Compilers 95

How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple state-
ments like A = B + C. Most programs doeally simple,and simple translations
work fine. Rather, complexity arises because programs are large and globally
complex in their interactions, and because the structure of compilers means that
decisions must be made about what code sequence is best one step at a time.

Compiler writers often are working under their own corollary of a basic prin-
ciple in architectureMake the frequent cases fast and the rare case cofirkat.
is, if we know which cases are frequent and which are rare, and if generating
code for both is straightforward, then the quality of the code for the rare case may
not be very important—but it must be correct!

Some instruction set properties help the compiler writer. These properties
should not be thought of as hard and fast rules, but rather as guidelines that will
make it easier to write a compiler that will generate efficient and correct code.

1. Regularity—Whenever it makes sense, the three primary components of an in-
struction set—the operations, the data types, and the addressing modes—
should beorthogonal Two aspects of an architecture are said to be orthogonal
if they are independent. For example, the operations and addressing modes are
orthogonal if for every operation to which a certain addressing mode can be
applied, all addressing modes are applicable. This helps simplify code genera-
tion and is particularly important when the decision about what code to gener-
ate is split into two passes in the compiler. A good counterexample of this
property is restricting what registers can be used for a certain class of instruc-
tions. This can result in the compiler finding itself with lots of available regis-
ters, but none of the right kind!

2. Provide primitives, not solutiorsSpecial features that “match” a language
construct are often unusable. Attempts to support high-level languages may
work only with one language, or do more or less than is required for a correct
and efficient implementation of the language. Some examples of how these at-
tempts have failed are given in section 2.9.

3. Simplify trade-offs among alternativefOne of the toughest jobs a compiler
writer has is figuring out what instruction sequence will be best for every seg-
ment of code that arises. In earlier days, instruction counts or total code size
might have been good metrics, but—as we saw in the last chapter—this is no
longer true. With caches and pipelining, the trade-offs have become very com-
plex. Anything the designer can do to help the compiler writer understand the
costs of alternative code sequences would help improve the code. One of the
most difficult instances of complex trade-offs occurs in a register-memory
architecture in deciding how many times a variable should be referenced be-
fore it is cheaper to load it into a register. This threshold is hard to compute
and, in fact, may vary among models of the same architecture.

Chapter 2 Instruction Set Principles and Examples

4. Provide instructions that bind the quantities known at compile ésneon-
stants—A compiler writer hates the thought of the machine interpreting at
runtime a value that was known at compile time. Good counterexamples of
this principle include instructions that interpret values that were fixed at com-
pile time. For instance, the VAX procedure call instructicatis() dynami-
cally interprets a mask saying what registers to save on a call, but the mask is
fixed at compile time. However, in some cases it may not be known by the
caller whether separate compilation was used.

Summary: The Role of Compilers

This section leads to several recommendations. First, we expect a new instruction
set architecture to have at least 16 general-purpose registers—not counting sepa-
rate registers for floating-point numbers—to simplify allocation of registers using
graph coloring. The advice on orthogonality suggests that all supported address-
ing modes apply to all instructions that transfer data. Finally, the last three pieces
of advice of the last subsection—provide primitives instead of solutions, simplify
trade-offs between alternatives, don't bind constants at runtime—all suggest that
it is better to err on the side of simplicity. In other words, understand that less is
more in the design of an instruction set.

2.8 | Putting It All Together: The DLX Architecture

In many places throughout this book we will have occasion to refer to a comput-
er's “machine language.” The machine we use is a mythical computer called
“MIX.” MIX is very much like nearly every computer in existence, except that it
is, perhaps, nicer ... MIXis the world’s first polyunsaturated computer. Like most
machines, it has an identifying number—the 1009. This number was found by tak-
ing 16 actual computers which are very similar to MIX and on which MIX can be
easily simulated, then averaging their number with equal weight:

{360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220 + S2000
+ 920 + 601 + H800 + PDP-4 + II)/16~ 1009.

The same number may be obtained in a simpler way by taking Roman numerals.

Donald Knuth,The Art of Computer Programming, Volume I: Fundamental Algorithms

In this section we will describe a simple load-store architecture called DLX (pro-
nounced “Deluxe”). The authors believe DLX to be the world’s second polyun-
saturated computer—the average of a number of recent experimental and
commercial machines that are very similar in philosophy to DLX. Like Knuth,

2.8 Putting It All Together: The DLX Architecture 97

we derived the name of our machine from an average expressed in Romatr
numerals:

(AMD 29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A,
MIPS M/1000, Motorola 88K, RISC I, SGI 4D/60, SPARCstation-1, Sun-4/110,
Sun-4/260) / 13 = 560 = DLX.

The instruction set architecture of DLX and its ancestors was based on obser
vations similar to those covered in the last sections. (In section 2.11 we discus:
how and why these architectures became popular.) Reviewing our expectation:
from each section:

« Section 2.2-Use general-purpose registers with a load-store architecture.

» Section 2.3-Support these addressing modes: displacement (with an address
offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred.

« Section 2.4-Support these simple instructions, since they will dominate the
number of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a PC-rela
tive address at least 8 bits long), jump, call, and return.

« Section 2.5-Support these data sizes and types: 8-, 16-, and 32-bit integers anc
64-bit IEEE 754 floating-point numbers.

« Section 2.6-Use fixed instruction encoding if interested in performance and
use variable instruction encoding if interested in code size.

« Section 2.7Provide at least 16 general-purpose registers plus separate floating-
point registers, be sure all addressing modes apply to all data transfer instruc
tions, and aim for a minimalist instruction set.

We introduce DLX by showing how it follows these recommendations. Like
most recent machines, DLX emphasizes
« A simple load-store instruction set

« Design for pipelining efficiency, including a fixed instruction set encoding
(discussed in Chapter 3)

« Efficiency as a compiler target

DLX provides a good architectural model for study, not only because of the re-
cent popularity of this type of machine, but also because it is an easy architecture
to understand. We will use this architecture again in Chapters 3 and 4, and i
forms the basis for a number of exercises and programming projects.

98

Chapter 2 Instruction Set Principles and Examples

Registers for DLX

DLX has 32 32-bit general-purpose registers (GPRs), named RO, R1, ..., R31.
Additionally, there is a set of floating-point registers (FPRs), which can be used
as 32 single-precision (32-bit) registers or as even-odd pairs holding double-
precision values. Thus, the 64-bit floating-point registers are named FO, F2, ...,
F28, F30. Both single- and double-precision floating-point operations (32-bit and
64-bit) are provided.

The value of RO is always 0. We shall see later how we can use this register to
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the integer registers. An
example is the floating-point status register, used to hold information about the
results of floating-point operations. There are also instructions for moving be-
tween a FPR and a GPR.

Data types for DLX

The data types are 8-bit bytes, 16-bit half words, and 32-bit words for integer data
and 32-bit single precision and 64-bit double precision for floating point. Half
words were added to the minimal set of recommended data types supported
because they are found in languages like C and popular in some programs, such as
the operating systems, concerned about size of data structures. They will also
become more popular as Unicode becomes more widely used. Single-precision
floating-point operands were added for similar reasons. (Remember the early
warning that you should measure many more programs before designing an
instruction set.)

The DLX operations work on 32-bit integers and 32- or 64-bit floating point.
Bytes and half words are loaded into registers with either zeros or the sign bit
replicated to fill the 32 bits of the registers. Once loaded, they are operated on
with the 32-bit integer operations.

Addressing modes for DLX data transfers

The only data addressing modes are immediate and displacement, both with 16-
bit fields. Register deferred is accomplished simply by placing 0 in the 16-bit dis-
placement field, and absolute addressing with a 16-bit field is accomplished by
using register 0 as the base register. This gives us four effective modes, although
only two are supported in the architecture.

DLX memory is byte addressable in Big Endian mode with a 32-bit address. As
it is a load-store architecture, all memory references are through loads or stores
between memory and either the GPRs or the FPRs. Supporting the data types
mentioned above, memory accesses involving the GPRs can be to a byte, to a half
word, or to a word. The FPRs may be loaded and stored with single-precision or
double-precision words (using a pair of registers for DP). All memory accesses
must be aligned.

2.8 Putting It All Together: The DLX Architecture 99

DLX Instruction Format

Since DLX has just two addressing modes, these can be encoded into the opcode
Following the advice on making the machine easy to pipeline and decode, all in-
structions are 32 bits with a 6-bit primary opcode. Figure 2.21 shows the instruc-
tion layout. These formats are simple while providing 16-bit fields for
displacement addressing, immediate constants, or PC-relative branch addresses.

I-type instruction
6 5 5 16

Opcode rsl rd Immediate

Encodes: Loads and stores of bytes, words, half words
All immediates (rd < rs1 op immediate)

Conditional branch instructions (rs1 is register, rd unused)
Jump register, jump and link register
(rd = 0, rs1 = destination, immediate = 0)

R-type instruction
6 5 5 5 11

Opcode rsl rs2 rd func

Register—register ALU operations: rd < rs1 func rs2
Function encodes the data path operation: Add, Sub, . ..
Read/write special registers and moves

J-type instruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

FIGURE 2.21 Instruction layout for DLX. All instructions are encoded in one of three
types.

DLX Operations

DLX supports the list of simple operations recommended above plus a few oth-
ers. There are four broad classes of instructions: loads and stores, ALU opera-
tions, branches and jumps, and floating-point operations.

Any of the general-purpose or floating-point registers may be loaded or stored,
except that loading RO has no effect. Single-precision floating-point numbers oc-
cupy a single floating-point register, while double-precision values occupy a pair.
Conversions between single and double precision must be done explicitly. The
floating-point format is IEEE 754 (see Appendix A). Figure 2.22 gives examples

100

Chapter 2 Instruction Set Principles and Examples

Example instruction

Instruction name

Meaning

LW R1,30(R2) Load word Regs[R1] ~3, Mem[30+Regs[R2]]
LW R1,1000(R0) Load word Regs[R1] 3, Mem[1000+0Q]
LB R1,40(R3) Load byte Regs[R1] «3, (Mem[40+Regs[R3]] o) 2* ##

Mem[40+Regs[R3]]

LBU R1,40(R3)

Load byte unsigned

Regs[R1] g, 0 24 ## Mem[40+Regs[R3]]

LH R1,40(R3)

Load half word

Regs[R1] <3, (Mem[40+Regs[R3]] o) 16 ##
Mem[40+Regs[R3[#Mem[41+Regs[R3]]

LF FO0,50(R3) Load float Regs[F0] « 30 Mem[50+Regs[R3]]

LD F0,50(R2) Load double Regs[FO[#Regs[Fl] g4 Mem[50+Regs[R2]]

SW R3,500(R4) Store word Mem[500+Regs[R4]] ~3, Regs[R3]

SF F0,40(R3) Store float Mem[40+Regs[R3]] 3, Regs[FO]

SD FO0,40(R3) Store double Mem[40+Regs[R3]] 3, Regs[FO];
Mem[44+Regs[R3]] 3, Regs[F1]

SH R3,502(R2) Store half Mem[502+Regs[R2]] 16 Regs[R3] 16.31

SB R2,41(R3) Store byte Mem[41+Regs[R3]] ~g Regs[R2] 24 31

FIGURE 2.22 The load and store instructions in DLX.

All use a single addressing mode and require that the memory

value be aligned. Of course, both loads and stores are available for all the data types shown.

of the load and store instructions. A complete list of the instructions appears in
Figure 2.25 (page 104). To understand these figures we need to introduce a few
additional extensions to our C description language:

« A subscriptis appended to the symbolvhenever the length of the datum be-
ing transferred might not be clear. Thus, means transfer ambit quantity.
We usex, y — zto indicate thaz should be transferred koandy.

« A subscript is used to indicate selection of a bit from a field. Bits are labeled
from the most-significant bit starting at 0. The subscript may be a single digit
(e.g.,Regs[R4] yields the sign bit of R4) or a subrange (6:ggs[R3] 24.31
yields the least-significant byte of R3).

« The variableMemused as an array that stands for main memory, is indexed by
a byte address and may transfer any number of bytes.

= A superscript is used to replicate a field (e0d?, yields a field of zeros of
length 24 bits).

« The symbok# is used to concatenate two fields and may appear on either side
of a data transfer.

2.8 Putting It All Together: The DLX Architecture 101

A summary of the entire description language appears on the back inside
cover. As an example, assuming that R8 and R10 are 32-bit registers:

Regs[R10] 1531 « 16(Mem[Regs[R8]] 0)8 ## Mem[Regs[R8]]

means that the byte at the memory location addressed by the contents of R8 is
sign-extended to form a 16-bit quantity that is stored into the lower half of R10.
(The upper half of R10 is unchanged.)

All ALU instructions are register-register instructions. The operations include
simple arithmetic and logical operations: add, subtrat, OR, XOR, and shifts.
Immediate forms of all these instructions, with a 16-bit sign-extended immediate,
are provided. The operatidtHl (load high immediate) loads the top half of a
register, while setting the lower half to 0. This allows a full 32-bit constant to be
built in two instructions, or a data transfer using any constant 32-bit address in
one extra instruction.

As mentioned above, RO is used to synthesize popular operations. Loading a
constant is simply an add immediate where one of the source operands is RO, anc
a register-register move is simply an add where one of the sources is RO. (We
sometimes use the mnemotnic, standing for load immediate, to represent the
former and the mnemoni¢OMor the latter.)

There are also compare instructions, which compare two registers<{=>,
<, 2). If the condition is true, these instructions place a 1 in the destination regis-
ter (to represent true); otherwise they place the value 0. Because these operation
“set” a register, they are called set-equal, set-not-equal, set-less-than, and so on
There are also immediate forms of these compares. Figure 2.23 gives some ex-
amples of the arithmetic/logical instructions.

Example instruction Instruction name Meaning
ADD R1,R2,R3 Add Regs[R1] — Regs[R2]+Regs[R3]
ADDI R1,R2 #3 Add immediate Regs[R1] — Regs[R2]+3
LHI R1,#42 Load high immediate Regs[R1] . 42##016
SLLI R1,R2,#5 Shift left logical Regs[R1] ~ Regs[R2]<<5
immediate
SLT R1,R2,R3 Set less than if (Regs[R2]<Regs[R3])
Regs[R1l] ~1lelse Regs[R1] ~0

FIGURE 2.23 Examples of arithmetic/logical instructions on DLX, both with and without im-
mediates.

Control is handled through a set of jumps and a set of branches. The four jump
instructions are differentiated by the two ways to specify the destination address
and by whether or not a link is made. Two jumps use a 26-bit signed offset added

102

Chapter 2 Instruction Set Principles and Examples

to the program counter (of the instruction sequentially following the jump) to de-
termine the destination address; the other two jump instructions specify a register
that contains the destination address. There are two flavors of jumps: plain jump,
and jump and link (used for procedure calls). The latter places the return
address—the address of the next sequential instruction—in R31.

All branches are conditional. The branch condition is specified by the in-
struction, which may test the register source for zero or nonzero; the register may
contain a data value or the result of a compare. The branch target address is spec-
ified with a 16-bit signed offset that is added to the program counter, which is
pointing to the next sequential instruction. Figure 2.24 gives some typical branch
and jump instructions. There is also a branch to test the floating-point status reg-
ister for floating-point conditional branches, described below.

Example instruction Instruction name Meaning
J name Jump PC—name; (PC+4)-2 %) <name<
(PC+a)r2 %)
JAL name Jump and link Regs[R31] —PC+4;PC —name;
(PC+4)-2 25) < name < ((PC+4)+2 25)
JALR R2 Jump and link register Regs[R31] ~PC+4; PC —Regs[R2]
JR R3 Jump register PC~ Regs[R3]
BEQZ R4,name Branch equal zero if (Regs[R4]==0) PC ~hame;
(PC+4)-2 1°) <name< (PC+4)+2 %)
BNEZ R4,name Branch not equal zero if (Regs[R4]!=0) PC ~name;
(PC+4)2 ®) <name< (PC+)+2 %)

FIGURE 2.24 Typical control-flow instructions in DLX. All control instructions, except jumps to an address in a register,
are PC-relative. If the register operand is RO, BEQZwill always branch, but the compiler will usually prefer to use a jump with
a longer offset over this “unconditional branch.”

Floating-point instructions manipulate the floating-point registers and indicate
whether the operation to be performed is single or double precision. The opera-
tions MOVFandMOVIxopy a single-precisiorMOVIF or double-precisionMOVp
floating-point register to another register of the same type. The operations
MOVFP2landMOVI2FP move data between a single floating-point register and an
integer register; moving a double-precision value to two integer registers requires
two instructions. Integer multiply and divide that work on 32-bit floating-point
registers are also provided, as are conversions from integer to floating point and
vice versa.

The floating-point operations are add, subtract, multiply, and divide; a Buffix
is used for double precision and a sulfiss used for single precision (e.g0ODD
ADDF, SUBD SUBF, MULTD MULTF, DIVD, DIVF). Floating-point compares set a

2.8 Putting It All Together: The DLX Architecture 103

bit in the special floating-point status register that can be tested with a pair of
branchesBFPT and BFPF, branch floating-point true and branch floating-point
false.

One slightly unusual DLX characteristic is that it uses the floating-point unit
for integer multiplies and divides. As we shall see in Chapters 3 and 4, the control
for the slower floating-point operations is much more complicated than for inte-
ger addition and subtraction. Since the floating-point unit already handles float-
ing point multiply and divide, it is not much harder for it to perform the relatively
slow operations of integer multiply and divide. Hence DLX requires that oper-
ands to be multiplied or divided be placed in floating-point registers.

Figure 2.25 contains a list of all DLX operations and their meaning. To give
an idea which instructions are popular, Figure 2.26 shows the frequency of in-
structions and instruction classes for five SPECint92 programs and Figure 2.27
shows the same data for five SPECfp92 programs. To give a more intuitive feel-
ing, Figures 2.28 and 2.29 show the data graphically for all instructions that are
responsible on average for more than 1% of the instructions executed.

Effectiveness of DLX

It would seem that an architecture with simple instruction formats, simple ad-
dress modes, and simple operations would be slow, in part because it has to exe
cute more instructions than more sophisticated designs. The performance
equation from the last chapter reminds us that execution time is a function of
more than just instruction count:

CPUtime = Instructioncountx CPIx Clock cycletime

To see whether reduction in instruction count is offset by increases in CPI or
clock cycle time, we need to compare DLX to a sophisticated alternative.

One example of a sophisticated instruction set architecture is the VAX. In the
mid 1970s, when the VAX was designed, the prevailing philosophy was to create
instruction sets that were close to programming languages to simplify compilers.
For example, because programming languages had loops, instruction sets shoulc
have loop instructions, not just simple conditional branches; they needed call in-
structions that saved registers, not just simple jump and links; they needed case
instructions, not just jump indirect; and so on. Following similar arguments, the
VAX provided a large set of addressing modes and made sure that all addressing
modes worked with all operations. Another prevailing philosophy was to mini-
mize code size. Recall that DRAMs have grown in capacity by a factor of four
every three years; thus in the mid 1970s DRAM chips contained less than 1/1000
the capacity of today’s DRAMS, so code space was also critical. Code space was

104

Chapter 2 Instruction Set Principles and Examples

Instruction type/opcode

Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or specjal
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB,LBU,SB Load byte, load byte unsigned, store byte

LH,LHU,SH Load half word, load half word unsigned, store half word

LW,SW Load word, store word (to/from integer registers)

LF,LD,SF,SD Load SP float, load DP float, store SP float, store DP float

MOVI2S, MOVS2I Move from/to GPR to/from a special register

MOVF, MOVD Copy one FP register or a DP pair to another register or pair

MOVFP2|,MOVI2FP Move 32 bits from/to FP registers to/from integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

ADD,ADDI,ADDU, ADDUI Add, add immediate (all immediates are 16 bits); signed and unsigned

SUB,SUBI,SUBU, SUBUI Subtract, subtract immediate; signed and unsigned

MULT,MULTU,DIV,DIVU Multiply and divide, signed and unsigned; operands must be FP registers; all operations
take and yield 32-bit values

AND,ANDI And, and immediate

OR,0ORI,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate

LHI Load high immediate—Iloads upper half of register with immediate

SLL, SRL, SRA, SLLI, Shifts: both immediateS__I) and variable form§_) ; shifts are shift left logical, right

SRLI, SRAI logical, right arithmetic

S S | Set conditional: “__" may beT,GT,LE,GE,EQ,NE

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

BFPT,BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC+4

J,JR Jumps: 26-bit offset from PC+4d)(or target in registedR)

JAL, JALR Jump and link: save PC+4 in R31, target is PC-relafixe)(or a registerJALR)

TRAP Transfer to operating system at a vectored address

RFE Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADDD,ADDF Add DP, SP numbers

SUBD,SUBF Subtract DP, SP numbers

MULTD,MULTF Multiply DP, SP floating point

DIVD,DIVF Divide DP, SP floating point

CVTF2D, CVTF2, Convert instructionsCVTx2y converts from type to typey, wherex andy arel

CVTD2F, CVTD2l, (integer),D (double precision), df (single precision). Both operands are FPRs.

CVTI2F, CVTI2D

_D,_F DP and SP compares: “__"lT,GT,LE,GE,EQ,NE ; sets bit in FP status register

FIGURE 2.25 Complete list of the instructions in DLX.

The formats of these instructions are shown in Figure 2.21.

SP = single precision; DP = double precision. This list can also be found on the page preceding the back inside cover.

2.8 Putting It All Together: The DLX Architecture 105

Integer
Instruction compress egntott espresso gcc (ccl) li average
load 19.8% 30.6% 20.9% 22.8% 31.3% 26%
store 5.6% 0.6% 5.1% 14.3% 16.7% 9%
add 14.4% 8.5% 23.8% 14.6% 11.1% 14%
sub 1.8% 0.3% 0.5% 0%
mul 0.1% 0%
div 0%
compare 15.4% 26.5% 8.3% 12.4% 5.4% 14%
load imm 8.1% 1.5% 1.3% 6.8% 2.4% 4%
cond branch 17.4% 24.0% 15.0% 11.5% 14.6% 17%
jump 1.5% 0.9% 0.5% 1.3% 1.8% 1%
call 0.1% 0.5% 0.4% 1.1% 3.1% 1%
return, jmp ind 0.1% 0.5% 0.5% 1.5% 3.5% 1%
shift 6.5% 0.3% 7.0% 6.2% 0.7% 4%
and 2.1% 0.1% 9.4% 1.6% 2.1% 3%
or 6.0% 5.5% 4.8% 4.2% 6.2% 5%
other (xor, not) 1.0% 2.0% 0.5% 0.1% 1%
load FP 0%
store FP 0%
add FP 0%
sub FP 0%
mul FP 0%
div FP 0%
compare FP 0%
mov reg-reg FP 0%
other FP 0%

FIGURE 2.26 DLX instruction mix for five SPECint92 programs. Note that integer register-register move instructions

are included in the add instruction. Blank entries have the value 0.0%.

de-emphasized in fixed-length instruction sets like DLX. For example, DLX ad-
dress fields always use 16 bits, even when the address is very small. In contrast
the VAX allows instructions to be a variable number of bytes, so there is little
wasted space in address fields.

Designers of VAX machines later performed a quantitative comparison of
VAX and a DLX-like machine for implementations with comparable organiza-
tions. Their choices were the VAX 8700 and the MIPS M2000. The differing

106 Chapter 2 Instruction Set Principles and Examples
Instruction doduc ear hydro2d mdljdp2 su2cor FP average
load 1.4% 0.2% 0.1% 1.1% 3.6% 1%
store 1.3% 0.1% 0.1% 1.3% 1%
add 13.6% 13.6% 10.9% 4.7% 9.7% 11%
sub 0.3% 0.2% 0.7% 0%
mul 0%
div 0%
compare 3.2% 3.1% 1.2% 0.3% 1.3% 2%
load imm 2.2% 0.2% 2.2% 0.9% 1%
cond branch 8.0% 10.1% 11.7% 9.3% 2.6% 8%
jump 0.9% 0.4% 0.4% 0.1% 0%
call 0.5% 1.9% 0.3% 1%
return, jmp ind 0.6% 1.9% 0.3% 1%
shift 2.0% 0.2% 2.4% 1.3% 2.3% 2%
and 0.4% 0.1% 0.3% 0%
or 0.2% 0.1% 0.1% 0.1% 0%
other (xor, not) 0%
load FP 23.3% 19.8% 24.1% 25.9% 21.6% 23%
store FP 5.7% 11.4% 9.9% 10.0% 9.8% 9%
add FP 8.8% 7.3% 3.6% 8.5% 12.4% 8%
sub FP 3.8% 3.2% 7.9% 10.4% 5.9% 6%
mul FP 12.0% 9.6% 9.4% 13.9% 21.6% 13%
div FP 2.3% 1.6% 0.9% 0.7% 1%
compare FP 4.2% 6.4% 10.4% 9.3% 0.8% 6%
mov reg-reg FP 2.1% 1.8% 5.2% 0.9% 1.9% 2%
other FP 2.4% 8.4% 0.2% 0.2% 1.2% 2%

FIGURE 2.27 DLX instruction mix for five programs from SPECfp92 . Note that integer register-register move instruc-
tions are included in the add instruction. Blank entries have the value 0.0%.

goals for VAX and MIPS have led to very different architectures. The VAX goals,
simple compilers and code density, led to powerful addressing modes, powerful
instructions, efficient instruction encoding, and few registers. The MIPS goals
were high performance via pipelining, ease of hardware implementation, and
compatibility with highly optimizing compilers. These goals led to simple in-
structions, simple addressing modes, fixed-length instruction formats, and a large
number of registers.

Figure 2.30 shows the ratio of the number of instructions executed, the ratio of
CPlIs, and the ratio of performance measured in clock cycles. Since the organizations

2.8 Putting It All Together: The DLX Architecture

107

and 3%
shift 4%
or | 5%
store int 9%
compare int | 13%
add int] 14%
conditional branch . 16%
load int] 26%

0%

10% 15% 20% 25%

Total dynamic count

5%

m compress

o eqgntott m espresso m gcc o i

FIGURE 2.28 Graphical display of instructions executed of the five programs from

SPECIint92 in Figure 2.26.

These instruction classes collectively are responsible on average

for 92% of instructions executed.

add int

mul FP

load FP

shitt JIFH 29%
mov reg FP B 2%
compare FP Il %
sub FP N o
add FP I 50,
conditional branch N 5%
store FP N %

N 1%
R 13%
I 23%

0%

10% 15% 20% 25%

Total dynamic count

5%

m doduc

@ ear m su2cor

o hydro2d

m mdljdp2

FIGURE 2.29 Graphical display of instructions executed of the five programs from

SPECfp92 in Figure 2.27.

These instruction classes collectively are responsible on average

for just under 90% of instructions executed.

108 Chapter 2 Instruction Set Principles and Examples

were similar, clock cycle times were assumed to be the same. MIPS executes about
twice as many instructions as the VAX, while the CPI for the VAX is about six times
larger than that for the MIPS. Hence the MIPS M2000 has almost three times the
performance of the VAX 8700. Furthermore, much less hardware is needed to build
the MIPS CPU than the VAX CPU. This cost/performance gap is the reason the
company that used to make the VAX has dropped it and is now making a machine
similar to DLX.

4.0

Performance

35 ratio

3.0

25

MIPS/IVAX 2.0

o Instructions
executed ratio

1.5
1.0
0.5 [
D—D\D\ﬂ___n—n/ﬂ/‘n\u CPI ratio
0.0 L L T . . L L)
g & A L Q o QO Q& A
S & 2 L & © o S
Q Cl & L & S & &
2 K N & R e\,’@ BN

SPEC 89 benchmarks

FIGURE 2.30 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using

SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the VAX
is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from Bhandarkar and
Clark [1991].)

29 | Fallacies and Pitfalls

Time and again architects have tripped on common, but erroneous, beliefs. In this

section we look at a few of them.

2.9 Fallacies and Pitfalls 109

Pitfall: Designing a “high-level” instruction set feature specifically oriented
to supporting a high-level language structure.

Attempts to incorporate high-level language features in the instruction set have
led architects to provide powerful instructions with a wide range of flexibility.
But often these instructions do more work than is required in the frequent case, or
they don't exactly match the requirements of the language. Many such efforts
have been aimed at eliminating what in the 1970s was calleskthantic gap
Although the idea is to supplement the instruction set with additions that bring
the hardware up to the level of the language, the additions can generate what
Wulf [1981] has called aemantic clash

... by giving too much semantic content to the instruction, the machine designer

made it possible to use the instruction only in limited contfxtd3]

More often the instructions are simply overkill—they are too general for the
most frequent case, resulting in unneeded work and a slower instruction. Again,
the VAX CALLSis a good exampleALLS uses a callee-save strategy (the regis-
ters to be saved are specified by the calbee}he saving is done by the call in-
struction in the caller. ThEALLS instruction begins with the arguments pushed
on the stack, and then takes the following steps:

1. Align the stack if needed.

2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as men
tioned in section 2.7). The mask is kept in the called procedure’s code—this
permits callee save to be done by the caller even with separate compilation.

4. Push the return address on the stack, then push the top and base of stack poin
ers for the activation record.

Clear the condition codes, which sets the trap enables to a known state.
Push a word for status information and a zero word on the stack.

Update the two stack pointers.

© N o U

Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of over-
head. Most procedures know their argument counts, and a much faster linkage
convention can be established using registers to pass arguments rather than th
stack. Furthermore, th@ALLSinstruction forces two registers to be used for link-
age, while many languages require only one linkage register. Many attempts to
support procedure call and activation stack management have failed to be useful,
either because they do not match the language needs or because they are to
general and hence too expensive to use.

110

Chapter 2 Instruction Set Principles and Examples

The VAX designers provided a simpler instructioB, that is much faster
since it only pushes the return PC on the stack and jumps to the procedure.
However, most VAX compilers use the more costiy LS instructions. The call
instructions were included in the architecture to standardize the procedure link-
age convention. Other machines have standardized their calling convention by
agreement among compiler writers and without requiring the overhead of a com-
plex, very general-procedure call instruction.

Fallacy: There is such a thing as a typical program.

Many people would like to believe that there is a single “typical” program that
could be used to design an optimal instruction set. For example, see the synthetic
benchmarks discussed in Chapter 1. The data in this chapter clearly show that
programs can vary significantly in how they use an instruction set. For example,
Figure 2.31 shows the mix of data transfer sizes for four of the SPEC92 pro-
grams: It would be hard to say what is typical from these four programs. The
variations are even larger on an instruction set that supports a class of applica-
tions, such as decimal instructions, that are unused by other applications.

S 100%

0%
Double word | 0%
0%

0%

= 100%
Word 12%
78%

0%
0%
Half word ™ 87%
4%
0%
0%
Byte | 1%

[19%

0% 50% 100%

Frequency of reference by size

| m hydro2d m ear o eqgntott m compress

FIGURE 2.31 Data reference size of four programs from SPEC92. Although you can cal-
culate an average size, it would be hard to claim the average is typical of programs.
Fallacy: An architecture with flaws cannot be successful.

The 80x86 provides a dramatic example: The architecture is one only its creators
could love (see Appendix D). Succeeding generations of Intel engineers have

2.10 Concluding Remarks 111

tried to correct unpopular architectural decisions made in designing the 80x86.
For example, the 80x86 supports segmentation, whereas all others picked paging;
the 80x86 uses extended accumulators for integer data, but other machines ust
general-purpose registers; and it uses a stack for floating-point data when every-
one else abandoned execution stacks long before. Despite these major difficul-
ties, the 80x86 architecture—because of its selection as the microprocessor in the
IBM PC—has been enormously successful.

Fallacy: You can design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hard-
ware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at the time they were made
look like mistakes. For example, in 1975 the VAX designers overemphasized the
importance of code-size efficiency, underestimating how important ease of de-
coding and pipelining would be 10 years later. Almost all architectures eventually
succumb to the lack of sufficient address space. However, avoiding this problem
in the long run would probably mean compromising the efficiency of the archi-
tecture in the short run.

2. 10 | Concluding Remarks

The earliest architectures were limited in their instruction sets by the hardware
technology of that time. As soon as the hardware technology permitted, architects
began looking for ways to support high-level languages. This search led to three
distinct periods of thought about how to support programs efficiently. In the
1960s, stack architectures became popular. They were viewed as being a gooc
match for high-level languages—and they probably were, given the compiler
technology of the day. In the 1970s, the main concern of architects was how to re-
duce software costs. This concern was met primarily by replacing software with
hardware, or by providing high-level architectures that could simplify the task of
software designers. The result was both the high-level-language computer archi-
tecture movement and powerful architectures like the VAX, which has a large
number of addressing modes, multiple data types, and a highly orthogonal archi-
tecture. In the 1980s, more sophisticated compiler technology and a renewed em-
phasis on machine performance saw a return to simpler architectures, based
mainly on the load-store style of machine.

Today, there is widespread agreement on instruction set design. However, in
the next decade we expect to see change in the following areas:

« The 32-bit address instruction sets are being extended to 64-bit addresses, ex
panding the width of the registers (among other things) to 64 bits. Appendix C
gives three examples of architectures that have gone from 32 bits to 64 bits.

112

Chapter 2 Instruction Set Principles and Examples

« Given the popularity of software for the 80x86 architecture, many companies
are looking to see if changes to load-store instruction sets can significantly im-
prove performance when emulating the 80x86 architecture.

« Inthe next two chapters we will see that conditional branches can limit the per-
formance of aggressive computer designs. Hence there is interest in replacing
conditional branches with conditional completion of operations, such as condi-
tional move (see Chapter 4).

« Chapter 5 explains the increasing role of memory hierarchy in performance of
machines, with a cache miss on some machines taking almost as many instruc-
tion times as page faults took on earlier machines. Hence there are investiga-
tions into hiding the cost of cache misses by prefetching and by allowing
caches and CPUs to proceed while servicing a miss (see Chapter 5).

« Appendix A describes new operations to enhance floating-point performance,
such as operations that perform a multiply and an add. Support for quadruple
precision, at least for data transfer, may also be coming down the line.

Between 1970 and 1985 many thought the primary job of the computer archi-
tect was the design of instruction sets. As a result, textbooks of that era empha-
size instruction set design, much as computer architecture textbooks of the 1950s
and 1960s emphasized computer arithmetic. The educated architect was expected
to have strong opinions about the strengths and especially the weaknesses of the
popular machines. The importance of binary compatibility in quashing innova-
tions in instruction set design was unappreciated by many researchers and text-
book writers, giving the impression that many architects would get a chance to
design an instruction set.

The definition of computer architecture today has been expanded to include
design and evaluation of the full computer system—not just the definition of the
instruction set—and hence there are plenty of topics for the architect to study.
(You may have guessed this the first time you lifted this book.) Hence the bulk of
this book is on design of computers versus instruction sets. Readers interested in
instruction set architecture may be satisfied by the appendices: Appendix C com-
pares four popular load-store machines with DLX. Appendix D describes the
most widely used instruction set, the Intel 80x86, and compares instruction
counts for it with that of DLX for several programs.

2.11 | Historical Perspective and References

One’s eyebrows should rise whenever a future architecture is developed with a
stack- or register-oriented instruction sgi. 20]

Meyers [1978]

2.11 Historical Perspective and References 113

The earliest computers, including the UNIVAC I, the EDSAC, and the IAS ma-
chines, were accumulator-based machines. The simplicity of this type of machine
made it the natural choice when hardware resources were very constrained. The
first general-purpose register machine was the Pegasus, built by Ferranti, Ltd. in
1956. The Pegasus had eight general-purpose registers, with RO always being zerc
Block transfers loaded the eight registers from the drum.

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the first ma-
chine to seriously consider software and hardware-software trade-offs. Barton
and the designers at Burroughs made the B5000 a stack architecture (as describe
in Barton [1961]). Designed to support high-level languages such as ALGOL,
this stack architecture used an operating system (MCP) written in a high-level
language. The B5000 was also the first machine from a U.S. manufacturer to sup-
port virtual memory. The B6500, introduced in 1968 (and discussed in Hauck and
Dent [1968]), added hardware-managed activation records. In both the B5000
and B6500, the top two elements of the stack were kept in the CPU and the rest of
the stack was kept in memory. The stack architecture yielded good code density,
but only provided two high-speed storage locations. The authors of both the orig-
inal IBM 360 paper [Amdahl, Blaauw, and Brooks 1964] and the original PDP-
11 paper [Bell et al. 1970] argue against the stack organization. They cite three
major points in their arguments against stacks:

1. Performance is derived from fast registers, not the way they are used.

2. The stack organization is too limiting and requires many swap and copy oper-
ations.

3. The stack has a bottom, and when placed in slower memory there is a perfor-
mance loss.

Stack-based machines fell out of favor in the late 1970s and, except for the Intel
80x86 floating-point architecture, essentially disappeared. For example, except
for the 80x86, none of the machines listed in the SPEC reports uses a stack.

The termcomputer architecturgvas coined by IBM in the early 1960s. Amdahl,
Blaauw, and Brooks [1964] used the term to refer to the programmer-visible portion
of the IBM 360 instruction set. They believed th&mily of machines of the same
architecture should be able to run the same software. Although this idea may seem
obvious to us today, it was quite novel at that time. IBM, even though it was the lead-
ing company in the industry, h&ide different architectures before the 360. Thus, the
notion of a company standardizing on a single architecture was a radical one. The 36C
designers hoped that six different divisions of IBM could be brought together by de-
fining a common architecture. Their definition of architecture was

... the structure of a computer that a machine language programmer must under-
stand to write a correct (timing independent) program for that machine.

114

Chapter 2 Instruction Set Principles and Examples

The term “machine language programmer” meant that compatibility would hold,
even in assembly language, while “timing independent” allowed different imple-
mentations.

The IBM 360 was the first machine to sell in large quantities with both byte
addressing using 8-bit bytes and general-purpose registers. The 360 also had
register-memory and limited memory-memory instructions.

In 1964, Control Data delivered the first supercomputer, the CDC 6600. As
Thornton [1964] discusses, he, Cray, and the other 6600 designers were the first
to explore pipelining in depth. The 6600 was the first general-purpose, load-store
machine. In the 1960s, the designers of the 6600 realized the need to simplify ar-
chitecture for the sake of efficient pipelining. This interaction between architec-
tural simplicity and implementation was largely neglected during the 1970s by
microprocessor and minicomputer designers, but it was brought back in the
1980s.

In the late 1960s and early 1970s, people realized that software costs were
growing faster than hardware costs. McKeeman [1967] argued that compilers and
operating systems were getting too big and too complex and taking too long to
develop. Because of inferior compilers and the memory limitations of machines,
most systems programs at the time were still written in assembly language. Many
researchers proposed alleviating the software crisis by creating more powerful,
software-oriented architectures. Tanenbaum [1978] studied the properties of
high-level languages. Like other researchers, he found that most programs are
simple. He then argued that architectures should be designed with this in mind
and should optimize program size and ease of compilation. Tanenbaum proposed
a stack machine with frequency-encoded instruction formats to accomplish these
goals. However, as we have observed, program size does not translate directly to
cost/performance, and stack machines faded out shortly after this work.

Strecker’s article [1978] discusses how he and the other architects at DEC re-
sponded to this by designing the VAX architecture. The VAX was designed to
simplify compilation of high-level languages. Compiler writers had complained
about the lack of complete orthogonality in the PDP-11. The VAX architecture
was designed to be highly orthogonal and to allow the mapping of a high-level-
language statement into a single VAX instruction. Additionally, the VAX design-
ers tried to optimize code size because compiled programs were often too large
for available memories.

The VAX-11/780 was the first machine announced in the VAX series. It is one
of the most successful and heavily studied machines ever built. The cornerstone
of DEC'’s strategy was a single architecture, VAX, running a single operating sys-
tem, VMS. This strategy worked well for over 10 years. The large number of pa-
pers reporting instruction mixes, implementation measurements, and analysis of
the VAX make it an ideal case study [Wiecek 1982; Clark and Levy 1982]. Bhan-
darkar and Clark [1991] give a quantitative analysis of the disadvantages of the
VAX versus a RISC machine, essentially a technical explanation for the demise
of the VAX.

2.11 Historical Perspective and References 115

While the VAX was being designed, a more radical approach, daiigd
level-language computer architectufidLLCA), was being advocated in the re-
search community. This movement aimed to eliminate the gap between high-lev-
el languages and computer hardware—what Gagliardi [1973] called the
“semantic gap"—by bringing the hardware “up to” the level of the programming
language. Meyers [1982] provides a good summary of the arguments and a his-
tory of high-level-language computer architecture projects.

HLLCA never had a significant commercial impact. The increase in memory
size on machines and the use of virtual memory eliminated the code-size prob-
lems arising from high-level languages and operating systems written in high-
level languages. The combination of simpler architectures together with software
offered greater performance and more flexibility at lower cost and lower com-
plexity.

In the early 1980s, the direction of computer architecture began to swing away
from providing high-level hardware support for languages. Ditzel and Patterson
[1980] analyzed the difficulties encountered by the high-level-language architec-
tures and argued that the answer lay in simpler architectures. In another paper
[Patterson and Ditzel 1980], these authors first discussed the idea of reduced in-
struction set computers (RISC) and presented the argument for simpler ar-
chitectures. Their proposal was rebutted by Clark and Strecker [1980].

The simple load-store machines from which DLX is derived are commonly
called RISC architectures. The roots of RISC architectures go back to machines
like the 6600, where Thornton, Cray, and others recognized the importance of in-
struction set simplicity in building a fast machine. Cray continued his tradition of
keeping machines simple in the CRAY-1. However, DLX and its close relatives
are built primarily on the work of three research projects: the Berkeley RISC pro-
cessor, the IBM 801, and the Stanford MIPS processor. These architectures have
attracted enormous industrial interest because of claims of a performance advan-
tage of anywhere from two to five times over other machines using the same tech-
nology.

Begun in 1975, the IBM project was the first to start but was the last to be-
come public. The IBM machine was designed as an ECL minicomputer, while
the university projects were both MOS-based microprocessors. John Cocke is
considered to be the father of the 801 design. He received both the Eckert-
Mauchly and Turing awards in recognition of his contribution. Radin [1982] de-
scribes the highlights of the 801 architecture. The 801 was an experimental
project that was never designed to be a product. In fact, to keep down cost and
complexity, the machine was built with only 24-bit registers.

In 1980, Patterson and his colleagues at Berkeley began the project that was tc
give this architectural approach its name (see Patterson and Ditzel [1980]). They
built two machines called RISC-I and RISC-II. Because the IBM project was not
widely known or discussed, the role played by the Berkeley group in promoting
the RISC approach was critical to the acceptance of the technology. The Berkeley

116

Chapter 2 Instruction Set Principles and Examples

group went on to build RISC machines targeted toward Smalltalk, described by
Ungar et al. [1984], and LISP, described by Taylor et al. [1986].

In 1981, Hennessy and his colleagues at Stanford published a description of
the Stanford MIPS machine. Efficient pipelining and compiler-assisted schedul-
ing of the pipeline were both key aspects of the original MIPS design.

These early RISC machines—the 801, RISC-Il, and MIPS—had much in
common. Both university projects were interested in designing a simple machine
that could be built in VLSI within the university environment. All three machines
used a simple load-store architecture, fixed-format 32-bit instructions, and em-
phasized efficient pipelining. Patterson [1985] describes the three machines and
the basic design principles that have come to characterize what a RISC machine
is. Hennessy [1984] provides another view of the same ideas, as well as other is-
sues in VLSI processor design.

In 1985, Hennessy published an explanation of the RISC performance advan-
tage and traced its roots to a substantially lower CPl—under 2 for a RISC ma-
chine and over 10 for a VAX-11/780 (though not with identical workloads). A
paper by Emer and Clark [1984] characterizing VAX-11/780 performance was
instrumental in helping the RISC researchers understand the source of the perfor-
mance advantage seen by their machines.

Since the university projects finished up, in the 1883ime frame, the tech-
nology has been widely embraced by industry. Many manufacturers of the early
computers (those made before 1986) claimed that their products were RISC ma-
chines. However, these claims were often born more of marketing ambition than
of engineering reality.

In 1986, the computer industry began to announce processors based on the
technology explored by the three RISC research projects. Moussouris et al.
[1986] describe the MIPS R2000 integer processor, while Kane's book [1986] is
a complete description of the architecture. Hewlett-Packard converted their exist-
ing minicomputer line to RISC architectures; the HP Precision Architecture is de-
scribed by Lee [1989]. IBM never directly turned the 801 into a product. Instead,
the ideas were adopted for a new, low-end architecture that was incorporated in
the IBM RT-PC and described in a collection of papers [Waters 1986]. In 1990,
IBM announced a new RISC architecture (the RS 6000), which is the first super-
scalar RISC machine (see Chapter 4). In 1987, Sun Microsystems began deliver-
ing machines based on the SPARC architecture, a derivative of the Berkeley
RISC-Il machine; SPARC is described in Garner et al. [1988]. The PowerPC
joined the forces of Apple, IBM, and Motorola. Appendix C summarizes several
RISC architectures.

Prior to the RISC architecture movement, the major trend had been highly mi-
crocoded architectures aimed at reducing the semantic gap. DEC, with the VAX,
and Intel, with the IAPX 432, were among the leaders in this approach. Today it
is hard to find a computer company without a RISC product. With the 1994 an-
nouncement that Hewlett Packard and Intel will eventually have a common archi-
tecture, the end of the 1970s architectures draws near.

2.11 Historical Perspective and References 117

References
AMDAHL, G. M., G. A. BAaauw, AND F. P. BROOKS JR. [1964]. “Architecture of the IBM System
360,”IBM J. Research and Developm@ (April), 87-101.

BARTON, R. S. [1961]. “A new approach to the functional design of a compe¢. Western Joint
Computer Conf.393-396.

BELL, G., R. @QDY, H. MCFARLAND, B. DELAGI, J. O’LAUGHLIN, R. NOONAN, AND W. WULF
[1970]. “A new architecture for mini-computers: The DEC PDP-Ptgc. AFIPS SJIC(657-675.

BHANDARKAR, D., AND D. W. Q.ARK [1991]. “Performance from architecture: Comparing a RISC
and a CISC with similar hardware organizatio&dc. Fourth Conf. on Architectural Support for
Programming Languages and Operating SystdiBEE/ACM (April), Palo Alto, Calif., 310-19.

CHow, F. C. [1983].A Portable Machine-Independent Global Optimizer—Design and Measure-
ments Ph.D. Thesis, Stanford Univ. (December).

CLARK, D. AND H. LEVY [1982]. “Measurement and analysis of instruction set use in the VAX-11/
780,” Proc. Ninth Symposium on Computer Architec{éeril), Austin, Tex., 9-17.

CLARK, D. AND W. D. SrRECKER [1980]. “Comments on ‘the case for the reduced instruction set
computer’,”"Computer Architecture Nev&6 (October), 34-38.

CRAWFORD, J.AND P. GELSINGER[1988]. Programming the 8038&ybex Books, Alameda, Calif.

DiTzEL, D. R.AND D. A. PATTERSON [1980]. “Retrospective on high-level language computer archi-
tecture,” inProc. Seventh Annual Symposium on Computer ArchitedtarBaule, France (June),
97-104.

EMER, J. SAND D. W. Q.ARK [1984]. “A characterization of processor performance in the VAX-11/
780,” Proc. 11th Symposium on Computer Architec{Utee), Ann Arbor, Mich., 301-310.

GAGLIARDI, U. O. [1973]. “Report of workshop 4—Software-related advances in computer hardware,”
Proc. Symposium on the High Cost of Softwhtenlo Park, Calif., 99-120.

GARNER, R., A. AGARWAL, F. BRIGGS E. BROWN, D. HOUGH, B. DY, S. KLEIMAN, S. MUNCHNIK,
M. NAMJOO, D. PATTERSON J. FENDLETON, AND R. Tuck [1988]. “Scalable processor architecture
(SPARC),”"COMPCON, IEEEMarch), San Francisco, 278-283.

HAuck, E. A.,AND B. A. DENT [1968]. “Burroughs’ B6500/B7500 stack mechanisfrbc. AFIPS
SJCG 245-251.

HENNESSY, J. [1984]. “VLSI processor architecturdEEE Trans. on ComputeiG-33:11 (Decem-
ber), 1221-1246.

HENNESSY, J. [1985]. “VLSI RISC processorsyLS| Systems Desigfl:10 (October), 22-32.

HENNESSY, J., N. dUPP| F. BASKETT, AND J. GLL [1981]. “MIPS: A VLSI processor architecture,”
Proc. CMU Conf. on VLSI Systems and Computati(@stober), Computer Science Press,
Rockville, Md.

KANE, G. [1986].MIPS R2000 RISC Architectyrérentice Hall, Englewood Cliffs, N.J.
LEE, R. [1989]. “Precision architectureComputer22:1 (January), 78-91.

Levy, H. AND R. EckHOUSE [1989]. Computer Programming and Architecture: The VAXgital
Press, Boston.

LUNDE, A. [1977]. “Empirical evaluation of some features of instruction set processor architecture,”
Comm. ACM20:3 (March), 143-152.

McKEemAN, W. M. [1967]. “Language directed computer desidPrdc. 1967 Fall Joint Computer
Conf.,Washington, D.C., 413-417.

MEYERS G. J. [1978]. “The evaluation of expressions in a storage-to-storage architeCamgter
Architecture New3:3 (October), 20-23.

118

Chapter 2 Instruction Set Principles and Examples

MEYERS G. J. [1982]Advances in Computer Architectund ed., Wiley, New York.

MOUSSOURIS J., L. QRUDELE, D. FREITAS, C. HANSEN, E. HUDSON, S. RRzYBYLSKI, T. RORDAN,
AND C. ROWEN [1986]. “A CMOS RISC processor with integrated system functioRsgdc.
COMPCON, IEEEMarch), San Francisco, 191.

PATTERSON D. [1985]. “Reduced instruction set compute3gmm. ACM28:1 (January), 8-21.

PATTERSON D. A. AND D. R. DTzEL [1980]. “The case for the reduced instruction set computer,”
Computer Architecture Nevés6 (October), 25-33.

RADIN, G. [1982]. “The 801 minicomputerProc. Symposium Architectural Support for Program-
ming Languages and Operating SystéMarch), Palo Alto, Calif., 39-47.

STRECKER W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11 famitygc.
AFIPS National Computer Corf7, 967—980.

TANENBAUM, A. S. [1978]. “Implications of structured programming for machine architecture,”
Comm. ACM21:3 (March), 237-246.

TAYLOR, G., P. HLFINGER, J. LARUS, D. PATTERSON AND B. ZORN [1986]. “Evaluation of the SPUR
LISP architecture,Proc. 13th Symposium on Computer Architectdemé), Tokyo.

THORNTON, J. E. [1964]. “Parallel operation in Control Data 66@rdc. AFIPS Fall Joint Com-
puter Conf26, part 2, 33—40.

UNGAR, D., R. BAuU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. “Architecture of SOAR:
Smalltalk on a RISC,Proc. 11th Symposium on Computer Architec{dtene), Ann Arbor, Mich.,
188-197.

WAKERLY, J. [1989]Microcomputer Architecture and Programminly,Wiley, New York.

WATERS, F.,ED. [1986].IBM RT Personal Computer TechnolotfM, Austin, Tex., SA 23-1057.

WIECEK, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler execlRi@,”’
Symposium on Architectural Support for Programming Languages and Operating Systems
(March), IEEE/ACM, Palo Alto, Calif., 177-184.

WULF, W. [1981]. “Compilers and computer architectur€gmputerl4:7 (July), 41-47.

EXERCISES

2.1 [20/15/10] <2.3,2.8> We are designing instruction set formats for a load-store archi-
tecture and are trying to decide whether it is worthwhile to have multiple offset lengths for
branches and memory references. We have decided that both branch and memory refer-
ences can have only 0-, 8-, and 16-bit offsets. The length of an instruction would be equal
to 16 bits + offset length in bits. ALU instructions will be 16 bits. Figure 2.32 contains the
data in cumulative form. Assume an additional bit is needed for the sign on the offset.

For instruction set frequencies, use the data for DLX from the average of the five bench-
marks for the load-store machine in Figure 2.26. Assume that the miscellaneous instruc-
tions are all ALU instructions that use only registers.

a. [20]<2.3,2.8> Suppose offsets were permitted to be 0, 8, or 16 bits in length, including
the sign bit. What is the average length of an executed instruction?

b. [15] <2.3,2.8> Suppose we wanted a fixed-length instruction and we chose a 24-bit
instruction length (for everything, including ALU instructions). For every offset of
longer than 8 bits, an additional instruction is required. Determine the number of

Exercises 119

Offset bits Cumulative data references Cumulative branches
0 17% 0%
1 17% 0%
2 23% 24%
3 32% 49%
4 40% 64%
5 48% 79%
6 54% 87%
7 57% 93%
8 60% 98%
9 61% 99%
10 69% 100%
11 71% 100%
12 75% 100%
13 78% 100%
14 80% 100%
15 100% 100%

FIGURE 2.32 The second and third columns contain the cumulative percentage of the

data references and branches, respectively, that can be accommodated with the
corresponding number of bits of magnitude in the displacement. These are the average
distances of all 10 programs in Figure 2.7.

instruction bytes fetched in this machine with fixed instruction size versus those
fetched with a byte-variable-sized instruction as defined in part (a).

c. [10]<2.3,2.8> Now suppose we use a fixed offset length of 16 bits so that no addition-
al instruction is ever required. How many instruction bytes would be required? Com-
pare this result to your answer to part (b), which used 8-bit fixed offsets that used
additional instruction words when larger offsets were required.

2.2 [15/10] <2.2> Several researchers have suggested that adding a register-memory ad-
dressing mode to a load-store machine might be useful. The idea is to replace sequences o

LOAD R1,0(Rb)

ADD R2,R2,R1
by

ADD R2,0(Rb)

Assume the new instruction will cause the clock cycle to increase by 10%. Use the instruc-
tion frequencies for the gcc benchmark on the load-store machine from Figure 2.26. The
new instruction affects only the clock cycle and not the CPI.

120

Chapter 2 Instruction Set Principles and Examples

a. [15] <2.2> What percentage of the loads must be eliminated for the machine with the
new instruction to have at least the same performance?

b. [10] <2.2> Show a situation in a multiple instruction sequence where a load of R1 fol-
lowed immediately by a use of R1 (with some type of opcode) could not be replaced
by a single instruction of the form proposed, assuming that the same opcode exists.

2.3 [20] <2.2>Your task is to compare the memory efficiency of four different styles of
instruction set architectures. The architecture styles are

1. Accumulator—All operations occur between a single register and a memory location.
2. Memory-memory-All three operands of each instruction are in memory.

3. Stack—All operations occur on top of the stack. Only push and pop access memory;
all other instructions remove their operands from stack and replace them with the re-
sult. The implementation uses a stack for the top two entries; accesses that use other
stack positions are memory references.

4. Load-store-All operations occur in registers, and register-to-register instructions
have three operands per instruction. There are 16 general-purpose registers, and regis-
ter specifiers are 4 bits long.

To measure memory efficiency, make the following assumptions about all four instruction
sets:

» The opcode is always 1 byte (8 bits).

« Allmemory addresses are 2 bytes (16 bits).

» All data operands are 4 bytes (32 bits).

» Allinstructions are an integral number of bytes in length.

There are no other optimizations to reduce memory traffic, and the varaBlgS andD
are initially in memory.

Invent your own assembly language mnemonics and write the best equivalent assembly
language code for the high-level-language fragment given. Write the four code sequences
for

A=B+C;
B=A+C;
D=A-B;

Calculate the instruction bytes fetched and the memory-data bytes transferred. Which ar-
chitecture is most efficient as measured by code size? Which architecture is most efficient
as measured by total memory bandwidth required (code + data)?

2.4 [Discussion] <2.2—-2.9> What are theonomicarguments (i.e., more machines sold)
for and against changing instruction set architecture?

2.5 [25] <2.1-2.5> Find an instruction set manual for some older machine (libraries and
private bookshelves are good places to look). Summarize the instruction set with the
discriminating characteristics used in Figure 2.2. Write the code sequence for this machine

Exercises 121

for the statements in Exercise 2.3. The size of the data need not be 32 bits as in Exercise 2.
if the word size is smaller in the older machine.

2.6 [20] <2.8> Consider the following fragment of C code:

for (i=0; i<=100; i++)
{All] = B[i] + C;}

Assume thaf andB are arrays of 32-bit integers, a@iéindi are 32-bit integers. Assume

that all data values and their addresses are kept in memory (at addresses 0, 5000, 1500, ar
2000 forA, B, C, andi , respectively) except when they are operated on. Assume that values
in registers are lost between iterations of the loop.

Write the code for DLX; how many instructions are required dynamically? How many
memory-data references will be executed? What is the code size in bytes?

2.7 [20] <App. D> Repeat Exercise 2.6, but this time write the code for the 80x86.

2.8 [20] <2.8> For this question use the code sequence of Exercise 2.6, but put the scalar
data—the value af, the value ofC, and the addresses of the array variables (but not the
actual array)—in registers and keep them there whenever possible.

Write the code for DLX; how many instructions are required dynamically? How many
memory-data references will be executed? What is the code size in bytes?

2.9 [20] <App. D> Make the same assumptions and answer the same questions as the prior
exercise, but this time write the code for the 80x86.

2.10 [15] <2.8>When designing memory systems it becomes useful to know the frequency
of memory reads versus writes and also accesses for instructions versus data. Using the av
erage instruction-mix information for DLX in Figure 2.26, find

« the percentage of all memory accesses for data
» the percentage of data accesses that are reads
» the percentage of all memory accesses that are reads
Ignore the size of a datum when counting accesses.

2.11 [18] <2.8> Compute the effective CPI for DLX using Figure 2.26. Suppose we have
made the following measurements of average CPI for instructions:

Instruction Clock cycles
All ALU instructions 1.0
Loads-stores 1.4

Conditional branches
Taken 2.0
Not taken 15
Jumps 1.2

122

Chapter 2 Instruction Set Principles and Examples

Assume that 60% of the conditional branches are taken and that all instructions in the mis-
cellaneous category of Figure 2.26 are ALU instructions. Average the instruction frequen-
cies of gcc and espresso to obtain the instruction mix.

2.12 [20/10] <2.3,2.8> Consider adding a new index addressing mode to DLX. The ad-
dressing mode adds two registers and an 11-bit signed offset to get the effective address.

Our compiler will be changed so that code sequences of the form

ADD R1, R1, R2
LW Rd, 100(R1)(or store)

will be replaced with a load (or store) using the new addressing mode. Use the overall
average instruction frequencies from Figure 2.26 in evaluating this addition.

a. [20] <2.3,2.8> Assume that the addressing mode can be used for 10% of the displace-
ment loads and stores (accounting for both the frequency of this type of address cal-
culation and the shorter offset). What is the ratio of instruction count on the enhanced
DLX compared to the original DLX?

b. [10] <2.3,2.8> If the new addressing mode lengthens the clock cycle by 5%, which
machine will be faster and by how much?

2.13 [25/15] <2.7> Find a C compiler and compile the code shown in Exercise 2.6 for one
of the machines covered in this book. Compile the code both optimized and unoptimized.

a. [25] <2.7> Find the instruction count, dynamic instruction bytes fetched, and data ac-
cesses done for both the optimized and unoptimized versions.

b. [15]<2.7> Try to improve the code by hand and compute the same measures as in part
(a) for your hand-optimized version.

2.14 [30] <2.8> Small synthetic benchmarks can be very misleading when used for mea-
suring instruction mixes. This is particularly true when these benchmarks are optimized. In
this exercise and Exercises 2.15-2.17, we want to explore these differences. These pro-
gramming exercises can be done with any load-store machine.

Compile Whetstone with optimization. Compute the instruction mix for the top 20 most
frequently executed instructions. How do the optimized and unoptimized mixes compare?
How does the optimized mix compare to the mix for spice on the same or a similar
machine?

2.15 [30] <2.8> Follow the same guidelines as the prior exercise, but this time use Dhry-
stone and compare it with TeX.

2.16 [30] <2.8> Many computer manufacturers now include tools or simulators that allow
you to measure the instruction set usage of a user program. Among the methods in use are
machine simulation, hardware-supported trapping, and a compiler technique that instru-
ments the object-code module by inserting counters. Find a processor available to you that
includes such a tool. Use it to measure the instruction set mix for one of TeX, gcc, or spice.
Compare the results to those shown in this chapter.

2.17 [30] <2.3,2.8> DLX has only three operand formats for its register-register opera-
tions. Many operations might use the same destination register as one of the sources. We

Exercises 123

could introduce a new instruction format into DLX calleglitRat has only two operands

and is a total of 24 bits in length. By using this instruction type whenever an operation had
only two different register operands, we could reduce the instruction bandwidth required
for a program. Modify the DLX simulator to count the frequency of register-register oper-
ations with only two different register operands. Using the benchmarks that come with the
simulator, determine how much more instruction bandwidth DLX requires than DLX with
the R, format.

2.18 [25] <App. C> How much do the instruction set variations among the RISC machines
discussed in Appendix C affect performance? Choose at least three small programs (e.g., ¢
sort), and code these programs in DLX and two other assembly languages. What is the re-
sulting difference in instruction count?

	Instruction Set Principles and Examples
	A n Add the number in storage location n into the accumulator.
	E n If the number in the accumulator is greater than or equal to zero execute next the order whic...
	Z Stop the machine and ring the warning bell.

	Wilkes�and Renwick
	Selection from the List of 18 Machine Instructions for the EDSAC (1949)
	2.1 Introduction �69
	2.2 Classifying Instruction Set Architectures �70
	2.3 Memory Addressing �73
	2.4 Operations in the Instruction Set �80
	2.5 Type and Size of Operands �85
	2.6 Encoding an Instruction Set �87
	2.7 Crosscutting Issues: The Role of Compilers �89
	2.8 Putting It All Together: The DLX Architecture �96
	2.9 Fallacies and Pitfalls �108
	2.10 Concluding Remarks �111
	2.11 Historical Perspective and References �112
	Exercises �118
	2.1
	Introduction
	In this chapter we concentrate on instruction set archi�tecture—the portion of the machine visibl...
	Throughout this chapter, we examine a wide variety of architectural measurements. These measureme...
	We begin by exploring how instruction set architectures can be classified and analyzed.
	2.2
	Classifying Instruction Set Architectures
	The type of internal storage in the CPU is the most basic differentiation, so in this section we ...
	Stack
	Accumulator
	Register (register-memory)
	Register (load-store)
	Push A
	Load A
	Load R1,A
	Load R1,A
	Push B
	Add B
	Add R1,B
	Load R2,B
	Add
	Store C
	Store C,R1
	Add ��R3,R1,R2
	Pop C
	Store C,R3
	FIGURE 2.1� The code sequence for C = A + B for four in�struction sets. It is assumed that A, B, ...

	Although most early machines used stack or accumulator-style archi�tectures, virtually every mach...
	More importantly, registers can be used to hold variables. When variables are allocated to regist...
	How many registers are sufficient? The answer of course depends on how they are used by the compi...
	Two major instruction set characteristics divide GPR architectures. Both characteristics concern ...
	0
	3
	SPARC, MIPS, Precision Architecture, PowerPC, ALPHA
	1
	2
	Intel 80x86, Motorola 68000
	2
	2
	VAX (also has three-operand formats)
	3
	3
	VAX (also has two-operand formats)
	FIGURE 2.2� Possible combinations of memory operands and total operands per typical ALU instructi...

	The advantages and disadvantages of each of these alternatives are shown in Figure�2.3. Of course...
	Register- register
	(0,3)
	Simple, fixed-length instruction en�coding. Simple code-generation model. Instructions take simil...
	Higher instruction count than architectures with memory references in instructions. Some instruct...
	Register- memory
	(1,2)
	Data can be accessed without load�ing first. �Instruction format tends to be easy to encode and y...
	Operands are not equivalent since a source operand in a binary operation is destroyed. Encoding a...
	Memory- memory
	(3,3)
	Most compact. Doesn’t waste regis�ters for �temporaries.
	Large variation in instruction size, espe�cially for three-operand instructions. Also, large vari...
	FIGURE 2.3� Advantages and disadvantages of the three most common types of general-purpose regist...
	Summary: Classifying Instruction Set Architectures

	Here and in subsections at the end of sections�2.3 to 2.7 we summarize those characteristics we w...
	With the class of architecture covered, the next topic is addressing operands.
	2.3
	Memory Addressing
	Independent of whether the architecture is register-register or allows any operand to be a memory...
	Interpreting Memory Addresses

	How is a memory address interpreted? That is, what object is accessed as a �function of the addre...
	There are two different conventions for ordering the bytes within a word. �Little Endian byte ord...
	In many machines, accesses to objects larger than a byte must be aligned. An access to an object ...
	Object addressed
	Aligned at byte offsets
	Misaligned at byte offsets
	Byte
	0,1,2,3,4,5,6,7
	Never
	Half word
	0,2,4,6
	1,3,5,7
	Word
	0,4
	1,2,3,5,6,7
	Double word
	0
	1,2,3,4,5,6,7
	FIGURE 2.4� Aligned and misaligned accesses of objects. The byte offsets are speci�fied for the l...

	Why would someone design a machine with alignment restrictions? Misalignment causes hardware comp...
	Even if data are aligned, supporting byte and half-word accesses requires an alignment network to...
	Addressing Modes

	We now know what bytes to access in memory given an address. In this sub�section we will look at ...
	Figure 2.5 shows all the data-addressing modes that have been used in recent machines. Immediates...
	Addressing mode
	Example instruction
	Meaning
	When used
	Register
	Add R4,R3
	Regs[R4]¨Regs[R4]+ Regs[R3]
	When a value is in a register.
	Immediate
	Add R4,#3
	Regs[R4]¨Regs[R4]+3
	For constants.
	Displacement
	Add R4,100(R1)
	Regs[R4]¨Regs[R4]+ Mem[100+Regs[R1]]
	Accessing local variables.
	Register deferred or indirect
	Add R4,(R1)
	Regs[R4]¨Regs[R4]+ Mem[Regs[R1]]
	Accessing using a pointer or a computed address.
	Indexed
	Add R3,(R1 + R2)
	Regs[R3]¨Regs[R3]+ Mem[Regs[R1]+Regs[R2]]
	Sometimes useful in array ad�dressing: R1 = base of array; R2 = index amount.
	Direct or absolute
	Add R1,(1001)
	Regs[R1]¨Regs[R1]+ Mem[1001]
	Sometimes useful for accessing static data; address constant may need to be large.
	Memory indi�rect or memory �deferred
	Add R1,@(R3)
	Regs[R1]¨Regs[R1]+ Mem[Mem[Regs[R3]]]
	If R3 is the address of a pointer p, then mode yields *p.
	Autoincrement
	Add R1,(R2)+
	Regs[R1]¨Regs[R1]+ Mem[Regs[R2]]
	Regs[R2]¨Regs[R2]+d
	Useful for stepping through ar�rays within a loop. R2 points to start of array; each reference in...
	Autodecrement
	Add R1,–(R2)
	Regs[R2]¨Regs[R2]–d
	Regs[R1]¨Regs[R1]+ Mem[Regs[R2]]
	Same use as autoincrement. �Autodecrement/increment can also act as push/pop to implement a stack.
	Scaled
	Add R1,100(R2)[R3]
	Regs[R1]¨ Regs[R1]+ Mem[100+Regs[R2]+Regs [R3]*d]
	Used to index arrays. May be �applied to any indexed addressing mode in some machines.
	FIGURE 2.5� Selection of addressing modes with examples, meaning, and usage. The extensions to C ...

	Figure 2.5 shows the most common names for the addressing modes, though the names differ among ar...
	Addressing modes have the ability to significantly reduce instruc�tion counts; they also add to t...
	Figure 2.6 shows the results of measuring addressing mode usage patterns in three programs on the...
	As Figure 2.6 shows, immediate and displacement addressing dominate addressing mode usage. Let’s ...
	FIGURE 2.6� Summary of use of memory addressing modes (including immediates). The data were taken...
	Displacement Addressing Mode

	The major question that arises for a displacement-style addressing mode is that of the range of d...
	FIGURE 2.7� Displacement values are widely distributed. The x axis is log2 of the displacement; t...
	Immediate or Literal Addressing Mode

	Immediates can be used in arithmetic operations, in comparisons (primarily for branches), and in ...
	FIGURE 2.8� We see that for ALU operations about one-half to three-quarters of the operations hav...

	Another important instruction set measurement is the range of val�ues for im�mediates. Like displ...
	FIGURE 2.9� The distribution of immediate values is shown. The x axis shows the number of bits ne...
	Summary: Memory Addressing

	First, because of their popularity, we would expect a new architecture to support at least the fo...
	Operator type
	Examples
	Arithmetic and logical
	Integer arithmetic and logical operations: add, and, subtract, or
	Data transfer
	Loads-stores (move instructions on machines with memory addressing)
	Control
	Branch, jump, procedure call and return, traps
	System
	Operating system call, virtual memory management instructions
	Floating point
	Floating-point operations: add, multiply
	Decimal
	Decimal add, decimal multiply, decimal-to-character conversions
	String
	String move, string compare, string search
	Graphics
	Pixel operations, compression/decompression operations
	FIGURE 2.10� Categories of instruction operators and examples of each. All machines generally pro...

	2.4
	Operations in the Instruction Set
	The operators supported by most instruction set architectures can be categorized, as in Figure 2....
	Rank
	80x86 instruction
	Integer average (% total executed)
	1
	load
	22%
	2
	conditional branch
	20%
	3
	compare
	16%
	4
	store
	12%
	5
	add
	8%
	6
	and
	6%
	7
	sub
	5%
	8
	move register-register
	4%
	9
	call
	1%
	10
	return
	1%
	Total
	96%
	FIGURE 2.11� The top 10 instructions for the 80x86. These percentages are the average of the same...

	Because the measure�ments of branch and jump behavior are fairly independent of other mea�suremen...
	Instructions for Control Flow

	There is no consistent terminology for instructions that change the flow of control. In the 1950s...
	We can distinguish four different types of control-flow change:
	1. Conditional branches
	2. Jumps
	3. Procedure calls
	4. Procedure returns

	We want to know the relative frequency of these events, as each event is differ�ent, may use diff...
	FIGURE 2.12� Breakdown of control flow instructions into three classes: calls or returns, jumps, ...

	The destination address of a control flow instruction must always be specified. This destina�tion...
	To implement returns and indirect jumps in which the target is not known at compile time, a metho...
	As branches generally use PC-relative addressing to specify their targets, a key question concern...
	FIGURE 2.13� Branch distances in terms of number of instructions between the target and the branc...

	Since most changes in control flow are branches, deciding how to specify the branch condi�tion is...
	Name
	How condition is tested
	Advantages
	Disadvantages
	Condition code (CC)
	Special bits are set by ALU operations, possibly under program �control.
	Sometimes condition is set for free.
	CC is extra state. Condition codes con�strain the ordering of instruc�tions since they pass infor...
	Condition register
	Test arbitrary register with the �result of a comparison.
	Simple.
	Uses up a register.
	Compare and branch
	Compare is part of the branch. Often compare is limited to subset.
	One instruction rather than two for a branch.
	May be too much work per �instruction.
	FIGURE 2.14� The major methods for evaluating branch conditions, their advantages, and their disa...

	One of the most noticeable properties of branches is that a large number of the comparisons are s...
	FIGURE 2.15� Frequency of different types of compares in conditional branches. This includes both...

	Procedure calls and returns include control transfer and possi�bly some state saving; at a minimu...
	In the cases where either convention could be used, some programs will be more opti�mal with call...
	Summary: Operations in the Instruction Set

	From this section we see the importance and popularity of simple instructions: load, store, add, ...
	2.5
	Type and Size of Operands
	How is the type of an operand designated? There are two primary alternatives: First, the type of ...
	Usually the type of an operand—for example, integer, single-precision floating point, character—e...
	Some architectures provide operations on character strings, although such operations are usually ...
	For business applications, some architectures support a decimal format, usu�ally called packed de...
	Our benchmarks use byte or character, half word (short integer), word (integer), and floating-poi...
	Note that Figure 2.16 was measured on a machine with 32-bit addresses: On a 64-bit address machin...
	FIGURE 2.16� Distribution of data accesses by size for the benchmark programs. Access to the majo...
	Summary: Type and Size of Operands

	From this section we would expect a new 32-bit architecture to support 8-, 16-, and 32-bit intege...
	2.6
	Encoding an Instruction Set
	Clearly the choices mentioned above will affect how the instructions are encoded into a binary re...
	This decision depends on the range of addressing modes and the degree of independence between opc...
	When encoding the instructions, the number of registers and the number of addressing modes both h...
	1. The desire to have as many registers and addressing modes as possible.
	2. The impact of the size of the register and addressing mode fields on the average instruction s...
	3. A desire to have instructions encode into lengths that will be easy to handle in the implement...

	Since the addressing modes and register fields make up such a large percent�age of the instructio...
	Figure 2.17 shows three popular choices for encoding the instruction set. The first we call varia...
	FIGURE 2.17� Three basic variations in instruction encoding. The variable format can support any ...

	To make these general classes more specific, this book contains several examples. Fixed formats o...
	Let’s look at a VAX instruction to see an example of the variable encoding:
	addl3 r1,737(r2),(r3)

	The name addl3 means a 32-bit integer add instruction with three operands, and this opcode takes ...
	1 + (1) + (1+2) + (1) = 6 bytes

	The length of VAX instructions varies between 1 and 53 bytes.
	Summary: Encoding the Instruction Set

	Decisions made in the components of instruction set design discussed in prior sections determine ...
	We have almost finished laying the groundwork for the DLX instruction set �architecture that will...
	2.7
	Crosscutting Issues: The Role of Compilers
	Today almost all programming is done in high-level languages. This develop- �ment means that sinc...
	The Structure of Recent Compilers

	To begin, let’s look at what optimizing compilers are like today. The structure of recent compile...
	FIGURE 2.18� Current compilers typically consist of two to four passes, with more highly optimizi...

	A compiler writer’s first goal is correct�ness—all valid programs must be compiled correctly. The...
	The complexity of writing a correct compiler is a major limitation on the amount of optimization ...
	How does this ordering of transformations interact with the in�struction set architecture? A good...
	Optimizations performed by modern compil�ers can be classified by the style of the transformation...
	1. High-level optimizations are often done on the source with output fed to later optimization pa...
	2. Local optimizations optimize code only within a straight-line code fragment (called a basic bl...
	3. Global optimizations extend the local optimizations across branches and introduce a set of tra...
	4. Register allocation.
	5. Machine-dependent optimizations attempt to take advantage of specific architectural knowledge.

	Because of the central role that register allocation plays, both in speeding up the code and in m...
	Graph coloring works best when there are at least 16 (and preferably more) general-purpose regist...
	It is sometimes difficult to separate some of the simpler opti�mizations—local and machine-depend...
	Optimization name
	Explanation
	Percentage of the total number of optimizing transforms
	High-level
	At or near the source level; machine- inde�pendent
	Procedure integration
	Replace procedure call by procedure body
	N.M.
	Local
	Within straight-line code
	Common subexpression elimination
	Replace two instances of the same computa�tion by single copy
	18%
	Constant propagation
	Replace all instances of a variable that is as�signed a constant with the constant
	22%
	Stack height reduction
	Rearrange expression tree to minimize re�sources needed for expression �evaluation
	N.M.
	Global
	Across a branch
	Global common subexpression elimination
	Same as local, but this version crosses branches
	13%
	Copy propagation
	Replace all instances of a variable A that has been assigned X (i.e., A = X) with X
	11%
	Code motion
	Remove code from a loop that computes same value each iteration of the loop
	16%
	Induction variable elimina�tion
	Simplify/eliminate array-addressing calcula�tions within loops
	2%
	Machine-dependent
	Depends on machine knowledge
	Strength reduction
	Many examples, such as replace multiply by a con�stant with adds and shifts
	N.M.
	Pipeline scheduling
	Reorder instructions to improve pipeline per�formance
	N.M.
	Branch offset optimization
	Choose the shortest branch displacement that reaches target
	N.M.
	FIGURE 2.19� Major types of optimizations and examples in each class. The third column lists the ...
	FIGURE 2.20� Change in instruction count for the programs hydro2d and li from the SPEC92 as compi...
	The Impact of Compiler Technology on the Architect’s �Decisions

	The interaction of compilers and high-level lan�guages significantly affects how programs use an ...
	The stack is used to allocate local variables. The stack is grown and shrunk on procedure call or...
	The global data area is used to allocate statically declared ob�jects, such as global variables a...
	The heap is used to allocate dynamic objects that do not adhere to a stack discipline. Objects in...
	Register allocation is much more effective for stack-allocated objects than for global variables,...
	p = &a –– gets address of a in p a = ... –– assigns to a directly *p = ... –– uses p to assign to...

	The variable a could not be register allocated across the assignment to *p without generating inc...
	How the Architect Can Help the Compiler Writer

	Today, the complexity of a compiler does not come from translating simple statements like A = B +...
	Compiler writers often are working under their own corollary of a basic principle in architecture...
	Some instruction set properties help the compiler writer. These properties should not be thought ...
	1. Regularity;—Whenever it makes sense, the three primary compo�nents of an instruction set—the o...
	2. Provide primitives, not solutions—Special features that “match” a language construct are often...
	3. Simplify trade-offs among alternatives—One of the toughest jobs a compiler writer has is figur...
	4. Provide instructions that bind the quantities known at compile time as �con�stants—A compiler ...
	Summary: The Role of Compilers

	This section leads to several recommendations. First, we expect a new instruction set architectur...
	2.8
	Putting It All Together: The DLX Architecture
	In many places throughout this book we will have occasion to refer to a computer’s “machine langu...
	Î(360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220 + S2000 + 920 + 601 + H800 + PDP-...
	The same number may be obtained in a simpler way by taking Roman numerals.
	Donald Knuth, The Art of Computer Programming, Volume�I:�Fundamental�Algorithms
	In this section we will describe a simple load-store architecture called DLX (pronounced “Deluxe”...
	(AMD 29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A, MIPS M/1000, Motorola 88K, R...
	The instruction set architecture of DLX and its ancestors was based on observations similar to th...
	Section 2.2—Use general-purpose registers with a load-store architecture.
	Section 2.3—Support these addressing modes: displacement (with an address offset size of 12 to 16...
	Section 2.4—Support these simple instructions, since they will dominate the number of instruction...
	Section 2.5—Support these data sizes and types: 8-, 16-, and 32-bit integers and 64-bit IEEE 754 ...
	Section 2.6—Use fixed instruction encoding if interested in performance and use variable instruct...
	Section 2.7—Provide at least 16 general-purpose registers plus separate f�loating- point register...
	We introduce DLX by showing how it follows these recommendations. Like most recent machines, DLX ...
	A simple load-store instruction set
	Design for pipelining efficiency, including a fixed instruction set encoding (discussed in Chapte...
	Efficiency as a compiler target
	DLX provides a good architectural model for study, not only because of the recent popularity of t...
	Registers for DLX

	DLX has 32 32-bit general-purpose registers (GPRs), named R0, R1, …, R31. Additionally, there is ...
	The value of R0 is always 0. We shall see later how we can use this register to synthesize a vari...
	A few special registers can be transferred to and from the integer registers. An example is the f...
	Data types for DLX

	The data types are 8-bit bytes, 16-bit half words, and 32-bit words for integer data and 32-bit s...
	The DLX operations work on 32-bit integers and 32- or 64-bit floating point. Bytes and half words...
	Addressing modes for DLX data transfers

	The only data addressing modes are immediate and displacement, both with 16- bit fields. Register...
	DLX memory is byte addressable in Big Endian mode with a 32-bit address. As it is a load-store ar...
	DLX Instruction Format

	Since DLX has just two addressing modes, these can be encoded into the opcode. Following the advi...
	FIGURE 2.21� Instruction layout for DLX. All instructions are encoded in one of three types.
	DLX Operations

	DLX supports the list of simple operations recommended above plus a few others. There are four br...
	Any of the general-purpose or floating-point registers may be loaded or stored, except that loadi...
	Example instruction
	Instruction name
	Meaning
	LW �R1,30(R2)
	Load word
	Regs[R1]¨32 Mem[30+Regs[R2]]
	LW R1,1000(R0)
	Load word
	Regs[R1]¨32 Mem[1000+0]
	LB R1,40(R3)
	Load byte
	Regs[R1]¨32 (Mem[40+Regs[R3]]0)24 ## Mem[40+Regs[R3]]
	LBU R1,40(R3)
	Load byte unsigned
	Regs[R1]¨32 024 ## Mem[40+Regs[R3]]
	LH R1,40(R3)
	Load half word
	Regs[R1]¨32 (Mem[40+Regs[R3]]0)16 ## Mem[40+Regs[R3]]##Mem[41+Regs[R3]]
	LF F0,50(R3)
	Load float
	Regs[F0]¨32 Mem[50+Regs[R3]]
	LD F0,50(R2)
	Load double
	Regs[F0]##Regs[F1]¨64 Mem[50+Regs[R2]]
	SW R3,500(R4)
	Store word
	Mem[500+Regs[R4]]¨32 Regs[R3]
	SF F0,40(R3)
	Store float
	Mem[40+Regs[R3]]¨32 Regs[F0]
	SD �F0,40(R3)
	Store double
	Mem[40+Regs[R3]]¨32 Regs[F0]; Mem[44+Regs[R3]]¨32 Regs[F1]
	SH R3,502(R2)
	Store half
	Mem[502+Regs[R2]]¨16 Regs[R3]16..31
	SB R2,41(R3)
	Store byte
	Mem[41+Regs[R3]]¨8 Regs[R2]24..31
	FIGURE 2.22� The load and store instructions in DLX. All use a single addressing mode and require...

	A subscript is appended to the symbol ¨ whenever the length of the datum being transferred might ...
	A subscript is used to indicate selection of a bit from a field. Bits are labeled from the most-s...
	The variable Mem, used as an array that stands for main memory, is indexed by a byte address and ...
	A superscript is used to replicate a field (e.g., 024 yields a field of zeros of length 24 bits).
	The symbol ## is used to concatenate two fields and may appear on either side of a data transfer.
	A summary of the entire description language appears on the back inside �cover. As an example, as...
	means that the byte at the memory location addressed by the contents of R8 is sign-extended to fo...
	All ALU instructions are register-register instructions. The opera�tions include simple arithmeti...
	As mentioned above, R0 is used to synthesize popular operations. Loading a constant is simply an ...
	There are also compare instructions, which compare two registers (=, ¹, <, >, £, ³). If the condi...
	Example instruction
	Instruction name
	Meaning
	ADD �R1,R2,R3
	Add
	Regs[R1]¨Regs[R2]+Regs[R3]
	ADDI R1,R2,#3
	Add immediate
	Regs[R1]¨Regs[R2]+3
	LHI R1,#42
	Load high immediate
	Regs[R1]¨42##016
	SLLI R1,R2,#5
	Shift left logical �immediate
	Regs[R1]¨Regs[R2]<<5
	SLT R1,R2,R3
	Set less than
	if (Regs[R2]<Regs[R3]) Regs[R1]¨1 else Regs[R1]¨0
	FIGURE 2.23� Examples of arithmetic/logical instructions on DLX, both with and without immediates.

	Control is handled through a set of jumps and a set of branches. The four jump instructions are d...
	All branches are conditional. The branch condition is specified by the in�struction, which may te...
	Example instruction
	Instruction name
	Meaning
	J name
	Jump
	PC¨name; ((PC+4)–225) £ name < ((PC+4)+225)
	JAL name
	Jump and link
	Regs[R31]¨PC+4; PC¨name; ((PC+4)–225) £ name < ((PC+4)+225)
	JALR R2
	Jump and link register
	Regs[R31]¨PC+4; PC¨Regs[R2]
	JR ��R3
	Jump register
	PC¨Regs[R3]
	BEQZ R4,name
	Branch equal zero
	if (Regs[R4]==0) PC¨name; ((PC+4)–215) £ name < ((PC+4)+215)
	BNEZ R4,name
	Branch not equal zero
	if (Regs[R4]!=0) PC¨name; ((PC+4)–215) £ name < ((PC+4)+215)
	FIGURE 2.24� Typical control-flow instructions in DLX. All control instructions, except jumps to ...

	Floating-point instructions manipulate the floating-point registers and indicate whether the oper...
	The floating-point operations are add, subtract, multiply, and divide; a suffix D is used for dou...
	One slightly unusual DLX characteristic is that it uses the floating-point unit for integer multi...
	Figure�2.25 contains a list of all DLX operations and their meaning. To give an idea which instru...
	Instruction type/opcode
	Instruction meaning
	Data transfers
	Move data between registers and memory, or between the integer and FP or �special registers; only...
	LB,LBU,SB
	Load byte, load byte unsigned, store byte
	LH,LHU,SH
	Load half word, load half word unsigned, store half word
	LW,SW
	Load word, store word (to/from integer registers)
	LF,LD,SF,SD
	Load SP float, load DP float, store SP float, store DP float
	MOVI2S, MOVS2I
	Move from/to GPR to/from a special register
	MOVF, MOVD
	Copy one FP register or a DP pair to another register or pair
	MOVFP2I,MOVI2FP
	Move 32 bits from/to FP registers to/from integer registers
	Arithmetic/logical
	Operations on integer or logical data in GPRs; signed arithmetic trap on overflow
	ADD,ADDI,ADDU, �ADDUI
	Add, add immediate (all immediates are 16 bits); signed and unsigned
	SUB,SUBI,SUBU, �S�UBUI
	Subtract, subtract immediate; signed and unsigned
	MULT,MULTU,DIV,�DIVU
	Multiply and divide, signed and unsigned; operands must be FP registers; all operations take and ...
	AND,ANDI
	And, and immediate
	OR,ORI,XOR,XORI
	Or, or immediate, exclusive or, exclusive or immediate
	LHI
	Load high immediate—loads upper half of register with immediate
	SLL, SRL, SRA, �SLLI, �SRLI, SRAI
	Shifts: both immediate (S__I) and variable form (S__); shifts are shift left logical, right logic...
	S__,S__I
	Set conditional: “__” may be LT,GT,LE,GE,EQ,NE
	Control
	Conditional branches and jumps; PC-relative or through register
	BEQZ,BNEZ
	Branch GPR equal/not equal to zero; 16-bit offset from PC+4
	BFPT,BFPF
	Test comparison bit in the FP status register and branch; 16-bit offset from PC+4
	J, JR
	Jumps: 26-bit offset from PC+4 (J) or target in register (JR)
	JAL, JALR
	Jump and link: save PC+4 in R31, target is PC-relative (JAL) or a register (JALR)
	TRAP
	Transfer to operating system at a vectored address
	RFE
	Return to user code from an exception; restore user mode
	Floating point
	FP operations on DP and SP formats
	ADDD,ADDF
	Add DP, SP numbers
	SUBD,SUBF
	Subtract DP, SP numbers
	MULTD,MULTF
	Multiply DP, SP floating point
	DIVD,DIVF
	Divide DP, SP floating point
	CVTF2D, CVTF2I, CVTD2F, CVTD2I, CVTI2F, CVTI2D
	Convert instructions: CVTx2y converts from type x to type y, where x and y are I (integer), D (do...
	__D,__F
	DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE; sets bit in FP �status register
	FIGURE 2.25� Complete list of the instructions in DLX. The formats of these instructions are show...

	Instruction
	compress
	eqntott
	espresso
	gcc (cc1)
	li
	Integer average
	load
	19.8%
	30.6%
	20.9%
	22.8%
	31.3%
	26%
	store
	5.6%
	0.6%
	5.1%
	14.3%
	16.7%
	9%
	add
	14.4%
	8.5%
	23.8%
	14.6%
	11.1%
	14%
	sub
	1.8%
	0.3%
	0.5%
	0%
	mul
	0.1%
	0%
	div
	0%
	compare
	15.4%
	26.5%
	8.3%
	12.4%
	5.4%
	14%
	load imm
	8.1%
	1.5%
	1.3%
	6.8%
	2.4%
	4%
	cond branch
	17.4%
	24.0%
	15.0%
	11.5%
	14.6%
	17%
	jump
	1.5%
	0.9%
	0.5%
	1.3%
	1.8%
	1%
	call
	0.1%
	0.5%
	0.4%
	1.1%
	3.1%
	1%
	return, jmp ind
	0.1%
	0.5%
	0.5%
	1.5%
	3.5%
	1%
	shift
	6.5%
	0.3%
	7.0%
	6.2%
	0.7%
	4%
	and
	2.1%
	0.1%
	9.4%
	1.6%
	2.1%
	3%
	or
	6.0%
	5.5%
	4.8%
	4.2%
	6.2%
	5%
	other (xor, not)
	1.0%
	2.0%
	0.5%
	0.1%
	1%
	load FP
	0%
	store FP
	0%
	add FP
	0%
	sub FP
	0%
	mul FP
	0%
	div FP
	0%
	compare FP
	0%
	mov reg-reg FP
	0%
	other FP
	0%
	FIGURE 2.26� DLX instruction mix for five SPECint92 programs. Note that integer register-register...

	Instruction
	doduc
	ear
	hydro2d
	mdljdp2
	su2cor
	FP average
	load
	1.4%
	0.2%
	0.1%
	1.1%
	3.6%
	1%
	store
	1.3%
	0.1%
	0.1%
	1.3%
	1%
	add
	13.6%
	13.6%
	10.9%
	4.7%
	9.7%
	11%
	sub
	0.3%
	0.2%
	0.7%
	0%
	mul
	0%
	div
	0%
	compare
	3.2%
	3.1%
	1.2%
	0.3%
	1.3%
	2%
	load imm
	2.2%
	0.2%
	2.2%
	0.9%
	1%
	cond branch
	8.0%
	10.1%
	11.7%
	9.3%
	2.6%
	8%
	jump
	0.9%
	0.4%
	0.4%
	0.1%
	0%
	call
	0.5%
	1.9%
	0.3%
	1%
	return, jmp ind
	0.6%
	1.9%
	0.3%
	1%
	shift
	2.0%
	0.2%
	2.4%
	1.3%
	2.3%
	2%
	and
	0.4%
	0.1%
	0.3%
	0%
	or
	0.2%
	0.1%
	0.1%
	0.1%
	0%
	other (xor, not)
	0%
	load FP
	23.3%
	19.8%
	24.1%
	25.9%
	21.6%
	23%
	store FP
	5.7%
	11.4%
	9.9%
	10.0%
	9.8%
	9%
	add FP
	8.8%
	7.3%
	3.6%
	8.5%
	12.4%
	8%
	sub FP
	3.8%
	3.2%
	7.9%
	10.4%
	5.9%
	6%
	mul FP
	12.0%
	9.6%
	9.4%
	13.9%
	21.6%
	13%
	div FP
	2.3%
	1.6%
	0.9%
	0.7%
	1%
	compare FP
	4.2%
	6.4%
	10.4%
	9.3%
	0.8%
	6%
	mov reg-reg FP
	2.1%
	1.8%
	5.2%
	0.9%
	1.9%
	2%
	other FP
	2.4%
	8.4%
	0.2%
	0.2%
	1.2%
	2%
	FIGURE 2.27� DLX instruction mix for five programs from SPECfp92. Note that integer register-regi...
	FIGURE 2.28� Graphical display of instructions executed of the five programs from SPECint92 in Fi...
	FIGURE 2.29� Graphical display of instructions executed of the five programs from SPECfp92 in Fig...
	Effectiveness of DLX

	It would seem that an architecture with simple instruction formats, simple address modes, and sim...
	To see whether reduction in instruction count is offset by increases in CPI or clock cycle time, ...
	One example of a sophisticated instruction set architecture is the VAX. In the mid 1970s, when th...
	Designers of VAX machines later performed a quantitative comparison of VAX and a DLX-like machine...
	Figure 2.30 shows the ratio of the number of instructions executed, the ratio of CPIs, and the ra...
	FIGURE 2.30� Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cy...

	2.9
	Fallacies and Pitfalls
	Time and again architects have tripped on common, but erroneous, beliefs. In this section we look...
	Pitfall: Designing a “high-level” instruction set feature specifically oriented to supporting a h...
	Attempts to incorporate high-level language features in the instruction set have led architects t...
	... by giving too much semantic content to the instruction, the machine designer made it possible...
	More often the instructions are simply overkill—they are too general for the most frequent case, ...
	1. Align the stack if needed.
	2. Push the argument count on the stack.
	3. Save the registers indicated by the procedure call mask on the stack (as men�tioned in section...
	4. Push the return address on the stack, then push the top and base of stack pointers for the act...
	5. Clear the condition codes, which sets the trap enables to a known state.
	6. Push a word for status information and a zero word on the stack.
	7. Update the two stack pointers.
	8. Branch to the first instruction of the procedure.

	The vast majority of calls in real programs do not require this amount of overhead. Most procedur...
	The VAX designers provided a simpler instruction, JSB, that is much faster since it only pushes t...
	Fallacy: There is such a thing as a typical program.
	Many people would like to believe that there is a single “typical” program that could be used to ...
	FIGURE 2.31� Data reference size of four programs from SPEC92. Although you can calculate an aver...

	The 80x86 provides a dramatic example: The architecture is one only its creators could love (see ...
	All architecture design involves trade-offs made in the context of a set of hardware and software...
	2.10
	Concluding Remarks
	The earliest architectures were limited in their instruction sets by the hardware technology of t...
	Today, there is widespread agreement on instruction set design. However, in the next decade we ex...
	The 32-bit address instruction sets are being extended to 64-bit addresses, expanding the width o...
	Given the popularity of software for the 80x86 architecture, many companies are looking to see if...
	In the next two chapters we will see that conditional branches can limit the performance of aggre...
	Chapter 5 explains the increasing role of memory hierarchy in performance of machines, with a cac...
	Appendix A describes new operations to enhance floating-point performance, such as operations tha...
	Between 1970 and 1985 many thought the primary job of the computer architect was the design of in...
	The definition of computer architecture today has been expanded to include design and evaluation ...
	2.11
	Historical Perspective and References
	One’s eyebrows should rise whenever a future architecture is de�veloped with a stack- or register...
	Meyers [1978]
	The earliest computers, including the Univac I, the EDSAC, and the IAS machines, were accumulator...
	In 1963, Burroughs delivered the B5000. The B5000 was per�haps the first machine to seriously con...
	1. Performance is derived from fast registers, not the way they are used.
	2. The stack organization is too limiting and requires many swap and copy operations.
	3. The stack has a bottom, and when placed in slower memory there is a perfor�mance loss.

	Stack-based machines fell out of favor in the late 1970s and, except for the Intel 80x86 floating...
	The term computer architecture was coined by IBM in the early 1960s. Amdahl, Blaauw, and Brooks [...
	... the structure of a computer that a machine language programmer must understand to write a cor...
	The term “machine language programmer” meant that compati�bility would hold, even in assembly lan...
	The IBM 360 was the first machine to sell in large quantities with both byte addressing using 8-b...
	In 1964, Control Data delivered the first supercomputer, the CDC 6600. As Thornton [1964] discuss...
	In the late 1960s and early 1970s, people realized that software costs were growing faster than h...
	Strecker’s article [1978] discusses how he and the other architects at DEC responded to this by d...
	The VAX-11/780 was the first machine announced in the VAX series. It is one of the most successfu...
	While the VAX was being designed, a more radical approach, called high- �level-language computer ...
	HLLCA never had a significant commercial impact. The increase in memory size on machines and the ...
	In the early 1980s, the direction of computer architecture be�gan to swing away from providing hi...
	The simple load-store machines from which DLX is derived are commonly called RISC architec�tures....
	Begun in 1975, the IBM project was the first to start but was the last to become public. The IBM ...
	In 1980, Patterson and his colleagues at Berkeley began the project that was to give this archite...
	In 1981, Hennessy and his colleagues at Stanford published a description of the Stanford MIPS mac...
	These early RISC machines—the 801, RISC-II, and MIPS—had much in common. Both university projects...
	In 1985, Hennessy published an explanation of the RISC performance advantage and traced its roots...
	Since the university projects finished up, in the 1983–84 time frame, the technology has been wid...
	In 1986, the computer industry began to announce processors based on the technology explored by t...
	Prior to the RISC architecture movement, the major trend had been highly microcoded architectures...
	References

	Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr. [1964]. “Architecture of the IBM �System 360,”...
	Barton, R. S. [1961]. “A new approach to the functional design of a computer,” Proc. Western Join...
	Bell, G., R. Cady, H. McFarland, B. DeLagi, J. O’Laughlin, R. Noonan, and W. Wulf [1970]. “A new ...
	Bhandarkar, D., and D. W. Clark [1991]. “Performance from architecture: Comparing a RISC and a CI...
	Chow, F. C. [1983]. A Portable Machine-Independent Global Optimizer—Design and Measurements, Ph.D...
	Clark, D. and H. Levy [1982]. “Measurement and analysis of instruction set use in the VAX-11/ 780...
	Clark, D. and W. D. Strecker [1980]. “Comments on ‘the case for the reduced instruction set compu...
	Crawford, J. and P. Gelsinger [1988]. Programming the 80386, Sybex Books, Alameda, Calif.
	Ditzel, D. R. and D. A. Patterson [1980]. “Retrospective on high-level language computer architec...
	Emer, J. S. and D. W. Clark [1984]. “A characterization of processor performance in the VAX-11/ 7...
	Gagliardi, U. O. [1973]. “Report of workshop 4–Software-related advances in computer hard�ware,” ...
	Garner, R., A. Agarwal, F. Briggs, E. Brown, D. Hough, B. Joy, S. Kleiman, S. Munchnik, M. Namjoo...
	Hauck, E. A., and B. A. Dent [1968]. “Burroughs’ B6500/B7500 stack mechanism,” Proc. AFIPS SJCC, ...
	Hennessy, J. [1984]. “VLSI processor architecture,” IEEE Trans. on Computers C-33:11 (December), ...
	Hennessy, J. [1985]. “VLSI RISC processors,” VLSI Systems Design VI:10 (October), 22–32.
	Hennessy, J., N. Jouppi, F. Baskett, and J. Gill [1981]. “MIPS: A VLSI processor architecture,” P...
	Kane, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J.
	Lee, R. [1989]. “Precision architecture,” Computer 22:1 (January), 78–91.
	Levy, H. and R. Eckhouse [1989]. Computer Programming and Architecture: The VAX, Digital Press, B...
	Lunde, A. [1977]. “Empirical evaluation of some features of instruction set processor architectur...
	McKeeman, W. M. [1967]. “Language directed computer design,” Proc. 1967 Fall Joint Computer Conf....
	Meyers, G. J. [1978]. “The evaluation of expressions in a storage-to-storage architecture,” Com�p...
	Meyers, G. J. [1982]. Advances in Computer Architecture, 2nd ed., Wiley, New York.
	Moussouris, J., L. Crudele, D. Freitas, C. Hansen, E. Hudson, S. Przybylski, T. Riordan, and C. R...
	Patterson, D. [1985]. “Reduced instruction set computers,” Comm. ACM 28:1 (January), 8–21.
	Patterson, D. A. and D. R. Ditzel [1980]. “The case for the reduced instruction set computer,” Co...
	Radin, G. [1982]. “The 801 minicomputer,” Proc. Symposium Architectural Support for Programming L...
	Strecker, W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11 family,” Proc. AFI...
	Tanenbaum, A. S. [1978]. “Implications of structured programming for machine architecture,” Comm....
	Taylor, G., P. Hilfinger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of the SPUR LIS...
	Thornton, J. E. [1964]. “Parallel operation in Control Data 6600,” Proc. AFIPS Fall Joint �Com�pu...
	Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture of SOAR: Smallta...
	Wakerly, J. [1989]. Microcomputer Architecture and Programming, J. Wiley, New York.
	Waters, F., ed. [1986]. IBM RT Personal Computer Technology, IBM, Austin, Tex., SA 23-1057.
	Wiecek, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler execution,” Pro...
	Wulf, W. [1981]. “Compilers and computer architecture,” Computer 14:7 (July), 41–47.
	Exercises
	2.1� [20/15/10] <2.3,2.8> We are designing instruction set formats for a load-store archi�tecture...

	For instruction set frequencies, use the data for DLX from the average of the five benchmarks for...
	Offset bits
	Cumulative data references
	Cumulative branches
	0
	17%
	0%
	1
	17%
	0%
	2
	23%
	24%
	3
	32%
	49%
	4
	40%
	64%
	5
	48%
	79%
	6
	54%
	87%
	7
	57%
	93%
	8
	60%
	98%
	9
	61%
	99%
	10
	69%
	100%
	11
	71%
	100%
	12
	75%
	100%
	13
	78%
	100%
	14
	80%
	100%
	15
	100%
	100%
	FIGURE 2.32� The second and third columns contain the cumulative percentage of the data refer�enc...
	a. [20] <2.3,2.8> Suppose offsets were permitted to be 0, 8, or 16 bits in length, including the ...
	b. [15] <2.3,2.8> Suppose we wanted a fixed-length instruction and we chose a 24-bit �instruction...
	c. [10] <2.3,2.8> Now suppose we use a fixed offset length of 16 bits so that no additional instr...
	2.2� [15/10] <2.2> Several researchers have suggested that adding a register-memory addressing mo...

	LOAD R1,0(Rb) ADD R2,R2,R1
	by
	ADD R2,0(Rb)
	Assume the new instruction will cause the clock cycle to increase by 10%. Use the instruction fre...
	a. [15] <2.2> What percentage of the loads must be eliminated for the machine with the new instru...
	b. [10] <2.2> Show a situation in a multiple instruction sequence where a load of R1 followed imm...
	2.3� [20] <2.2> Your task is to compare the memory efficiency of four different styles of instruc...
	1. Accumulator—All operations occur between a single register and a memory �location.

	2. Memory-memory—All three operands of each instruction are in memory.
	3. Stack—All operations occur on top of the stack. Only push and pop access memory; all other ins...
	4. Load-store—All operations occur in registers, and register-to-register instruc�tions have thre...

	To measure memory efficiency, make the following assumptions about all four instruc�tion sets:
	The opcode is always 1 byte (8 bits).
	All memory addresses are 2 bytes (16 bits).
	All data operands are 4 bytes (32 bits).
	All instructions are an integral number of bytes in length.
	There are no other optimizations to reduce memory traffic, and the variables A, B, C, and D are i...
	Invent your own assembly language mnemonics and write the best equivalent assembly language code ...
	A = B + C; B = A + C; D = A - B;
	Calculate the instruction bytes fetched and the memory-data bytes transferred. Which architecture...
	2.4� [Discussion] <2.2–2.9> What are the economic arguments (i.e., more machines sold) for and ag...
	2.5� [25] <2.1–2.5> Find an instruction set manual for some older machine (libraries and private ...
	2.6� [20] <2.8> Consider the following fragment of C code:

	for (i=0; i<=100; i++) {A[i] = B[i] + C;}
	Assume that A and B are arrays of 32-bit integers, and C and i are 32-bit integers. Assume that a...
	Write the code for DLX; how many instructions are required dynamically? How many memory-data refe...
	2.7� [20] <App. D> Repeat Exercise 2.6, but this time write the code for the 80x86.
	2.8� [20] <2.8> For this question use the code sequence of Exercise 2.6, but put the scalar data—...

	Write the code for DLX; how many instructions are required dynamically? How many memory-data refe...
	2.9� [20] <App. D> Make the same assumptions and answer the same questions as the prior exercise,...
	2.10� [15] <2.8> When designing memory systems it becomes useful to know the frequency of memory ...

	the percentage of all memory accesses for data
	the percentage of data accesses that are reads
	the percentage of all memory accesses that are reads
	Ignore the size of a datum when counting accesses.
	2.11� [18] <2.8> Compute the effective CPI for DLX using Figure 2.26. Suppose we have made the fo...

	Instruction
	Clock cycles
	All ALU instructions
	1.0
	Loads-stores
	1.4
	Conditional branches
	 Taken
	2.0
	 Not taken
	1.5
	Jumps
	1.2
	Assume that 60% of the conditional branches are taken and that all instructions in the miscellane...
	2.12� [20/10] <2.3,2.8> Consider adding a new index addressing mode to DLX. The addressing mode a...

	Our compiler will be changed so that code sequences of the form
	ADD R1, R1, R2 LW Rd, 100(R1) (or store)
	will be replaced with a load (or store) using the new addressing mode. Use the overall �average i...
	a. [20] <2.3,2.8> Assume that the addressing mode can be used for 10% of the displacement loads a...
	b. [10] <2.3,2.8> If the new addressing mode lengthens the clock cycle by 5%, which machine will ...
	2.13� [25/15] <2.7> Find a C compiler and compile the code shown in Exercise�2.6 for one of the m...
	a. [25] <2.7> Find the instruction count, dynamic instruction bytes fetched, and data accesses do...
	b. [15] <2.7> Try to improve the code by hand and compute the same mea�sures as in part (a) for y...

	2.14� [30] <2.8> Small synthetic benchmarks can be very misleading when used for measuring instru...

	Compile Whetstone with optimization. Compute the instruction mix for the top 20 most frequently e...
	2.15� [30] <2.8> Follow the same guidelines as the prior exercise, but this time use Dhry�stone a...
	2.16� [30] <2.8> Many computer manufacturers now include tools or simulators that allow you to me...
	2.17� [30] <2.3,2.8> DLX has only three operand formats for its register-register operations. Man...
	2.18� [25] <App. C> How much do the instruction set variations among the RISC machines discussed ...

