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We cover four examples of reduced instruction set computer (RISC) architec
in this appendix:

■ Hewlett Packard PA-RISC

■ IBM and Motorola PowerPC

■ SGI MIPS

■ SPARC, developed originally by Sun Microsystems

We also include a discussion of DLX, the instruction set architecture invente
this book. (A review of DLX can be found on the back inside cover or in Fig
2.25 of Chapter 2.) There has never been another class of computers so s
This similarity allows the presentation of four architectures in 25 pages, 
DLX thrown in for good measure! Characteristics of these architectures
found in Figure C.1. 

Readers of the first edition will note that the Intel i860 and Motorola M880
now sleep with the fishes; HP PA-RISC and IBM PowerPC took their plac

C.1 Introduction
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this appendix. Had we space for another architecture in our figures, the D
Alpha AXP would join this group. Its similarities to MIPS made it the obvio
candidate for omission.

After discussing the addressing modes and instruction formats of our 
RISC architectures, we present the survey of the instructions in three steps:

■ Instructions found in DLX

■ Instructions not found in DLX but found in two or more architectures

■ The unique instructions and characteristics of each architecture

We conclude with a speculation about the future directions for RISCs.
The one complication in this second edition appendix is that some of the o

RISCs have been extended over the years. As this book will be in print for se
years, we decided to describe the latest version of the architectures, as com
with these instruction sets will be common soon even if they are not at the tim
this writing: MIPS IV, PA-RISC 1.1; and SPARC version 9. We will also allu
to version 2.0 of the PA-RISC instruction set occasionally, which will be p
lished and shipped in systems shortly after the second edition of this bo
complete. We give the evolution of the instruction sets in the final section.

DLX MIPS I PA-RISC PowerPC SPARC V8

Date announced 1990 1986 1986 1993 1987

Instruction size (bits) 32 32 32 32 32

Address space (size, model) 32 bits, flat 32 bits, flat 48 bits,
 segmented

32 bits, flat 32 bits, flat

Data alignment Aligned Aligned Aligned Unaligned Aligned

Data addressing modes 2 2 5 4 2

Protection Page Page Page Page Page

Minimum page size 4 KB 4 KB 4 KB 4 KB 8 KB

I/O Memory 
mapped

Memory 
mapped

Memory 
mapped

Memory 
mapped

Memory 
mapped

Integer registers (number, 
model, size)

31 GPR × 32 
bits

31 GPR × 32 
bits

31 GPR × 32 
bits

32 GPR × 32 
bits

31 GPR × 32 
bits

Separate floating-point 
registers

32 × 32 or     
16 × 64 bits

16 × 32 or    
16 × 64 bits

56 × 32 or    
28 × 64 bits

32 × 32 or 
32 × 64 bits

32 × 32 or    
16 × 64 bits

Floating-point format IEEE 754 
single, double

IEEE 754 
single, double

IEEE 754 
single, double

IEEE 754 
single, double

IEEE 754
single, double

FIGURE C.1  Summary of the first version of five recent architectures.  Except for number of data address modes and
some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this to Figure C.12
on page C-23. Later versions of these architectures all support a flat, 64-bit address space.
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Figure C.2 shows the data addressing modes supported by each archite
Since all have one register that always has the value 0 when used in ad
modes—in fact, it is r0  in every architecture—the absolute address mode w
limited range can be synthesized using r0  as the base in displacement addres
ing. (Register 0 can be changed by ALU operations in PowerPC; register 0 
ways zero in the other machines.) Similarly, register-indirect addressin
synthesized by using displacement addressing with an offset of 0. Simplified
dressing modes is one distinguishing feature of RISC architectures.

References to code are normally PC-relative, although register indirect is
ported for returning from procedures, for case statements, and for pointer 
tion calls. One variation is that PC-relative branch addresses in everything
DLX are shifted left 2 bits before being added to the PC, thereby increasing
branch distance. This works because the length of all instructions is 32 bits
instructions must be aligned on 32-bit words in memory. 

Figure C.3 shows the format of instructions, which includes the size of the
dress in the instructions. Each instruction set architecture uses these four pr
instruction formats. The primary differences are subtle, concerning how to ex
constant fields to 32 bits. Figure C.4 shows the variations.

C.2 Addressing Modes and Instruction Formats

Addressing mode DLX MIPS IV PA-RISC 1.1 PowerPC SPARC  V9

Register + offset (displacement or based) √ √ √ √ √
Register + register (indexed) — √ (FP) √ √ √
Register + scaled register (scaled) — — √ — —

Register + offset & update register — — √ √ —

Register + register & update register — — √ √ —

FIGURE C.2 Summary of data addressing modes. PA-RISC also has short address versions of the offset addressing
modes. MIPS IV has indexed addressing for floating-point loads and stores. (These addressing modes are described in
Figure 2.5, page 75.) 
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FIGURE C.3 Instruction formats for five architectures. These four formats are found in all five architectures. (The su-
perscript notation in this figure means something different from our standard notation; it shows the width of a field in bits.)
Although the register fields are located in similar pieces of the instruction, be aware that the destination and two source fields
are scrambled. Here are the meanings of the abbreviations: Op = the main opcode, Opx = an opcode extension, Rd = the
destination register, Rs1 = source register 1, Rs2 = source register 2, and Const = a constant (used as an immediate or as
an address). Version 2.0 of PA-RISC will include a 16-bit add immediate format and a 17-bit address for calls. Note that our
discussion of DLX in Chapters 2 and 3 numbers bits from left to right, while this figure uses right-to-left numbering.

Opcode Register Constant

DLX

MIPS

PowerPC

PA-RISC

SPARC

DLX

MIPS

PowerPC

PA-RISC

SPARC

DLX

MIPS

PowerPC

PA-RISC

SPARC

DLX

MIPS

PowerPC

PA-RISC

SPARC

Register-register

Register-immediate

Branch

Jump/call

Op6

31 25 20 15 10 0

31 25 20 15 0

31 25

31 25

20 15 0

0

Rs15 Rs25 Rd5

Rs15 Rd5 Const16

Const5

Rs15 Rd5 Const16

Rs15 Opx5
/Rs25 Const16

Opx6

Opx3

Opx11

Rs15 Const14 Opx2

O C

Opx2

O C

Rs25 Rs15

Rs15

Const11

Const19

Const26

Const26

Const24

Const11

Const30

Const5

Const16

Const16

Rs15 Rd5

Rd5 Rs15

Rs25 Rd5

Rd5

Opx6 Const11

Opx6 Rs15 1 Const13

Rs15 Rs25 Rd5

Rd5 Rs15

Rs15

Rs25 Opx11

Opx6

Opx11

Opx11Rs215 Rs125 Rd5

Opx80Rd5 Opx6 Rs25

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op2

Op2

Op2

Op2

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op6

31 29 24 18 13 12 4 0

31 29 24 18 13 12 0

31 29 18 12 1 0

31 29 20 15 12 1 0
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The similarities of each architecture allow simultaneous descriptions, sta
with the operations equivalent to DLX.

DLX Instructions

Almost every instruction found in DLX is found in the other architectures,
Figure C.5 shows. (For reference, definitions of the DLX instructions are fo
in Figure 2.25 of Chapter 2 and on the back inside cover.) Instructions are 
under four categories: data transfer; arithmetic, logical; control; and floa
point. A fifth category in the figure shows conventions for register usage 
pseudo-instructions on each architecture. If a DLX instruction requires a sho
quence of instructions in other architectures, these instructions are separa
semicolons in Figure C.5. (To avoid confusion, the destination register 
always be the leftmost operand in this appendix, independent of the notation
mally used with each architecture.)

Every architecture must have a scheme for compare and conditional br
but despite all the similarities, each of these architectures has found a diff
way to perform the operation.

Format: instruction category DLX MIPS IV PA-RISC 1.1 PowerPC SPARC  V9

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign — Sign Sign Sign

Register-immediate: data transfer Sign Sign Sign Sign Sign

Register-immediate: arithmetic Sign Sign Sign Sign Sign

Register-immediate: logical Sign Zero — Zero Sign

FIGURE C.4 Summary of constant extension. The constants in the jump and call instructions of MIPS are not sign ex-
tended since they only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged (PA-RISC has no logical
immediate instructions).

C.3 Instructions: The DLX Subset
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Instruction name DLX MIPS IV PA-RISC 1.1 PowerPC SPARC  V9

Data transfer
(instruction formats) R–I R–I R–I, R–R R–I, R–R R–I, R–R

Load byte signed LB LB LDB; 
EXTRS,8,31

LBZ; EXTSB LDSB

Load byte unsigned LBU LBU LDB,LDBX,LDBS LBZ LDUB

Load half word signed LH LH LDH; 
EXTRS16,31

LHA LDSH

Load half word 
unsigned

LHU LHU LDH,LDHX,LDHS LHZ LDUH

Load word LW LW LDW,LDWX, LDWS LW LD

Load SP float LF LWC1 FLDWX,FLDWS LFS LDF

Load DP float LD LDC1 FLDDX,FLDDS LFD LDDF

Store byte SB SB STB,STBX,STBS STB STB

Store half word SH SH STH,STHX,STHS STH STH

Store word SW SW STW,STWX,STWS STW ST

Store SP float SF SWC1 FSTWX,FSTWS STFS STF

Store DP float SD SWD1 FSTDX,FSTDS STFD STDF

Read, write 
special registers

MOVS2I,
MOVI2S

MF, MT_ MFCTL, MTCTL MFSPR, MF_, 
MTSPR, MT_

RD,WR, 
RDPR,WRPR,
LDXFSR, STXFSR

Move int. to FP reg. MOVI2FP MFC1 STW; FLDWX STW; LDFS ST; LDF

Move FP to int. reg. MOVFP2I MTC1 FSTWX; LDW STFS; LW STF; LD

Arithmetic, logical
(instruction formats) R–R, R–I R–R, R–I R–R, R–I R–R, R–I R–R, R–I

Add ADDU,ADDUI ADDU,
ADDIU

ADDL, LD0, 
ADDI, UADDCM

ADD,ADDI ADD

Add (trap if overflow) ADD,ADDI ADD,
ADDI

ADDO, ADDIO ADDO; 
MCRXR; BC

ADDcc; TVS

Sub SUBU,SUBUI SUBU SUB,SUBI SUBF SUB

Sub (trap if overflow) SUB,SUBI SUB SUBTO,SUBIO SUBF/oe SUBcc; TVS

Multiply  MULTU,
MULTUI

MULT,
MULTU

SHiADD; ...; 
(i=1,2,3)

MULLW, 
MULLI

MULX 

Multiply (trap if ovf) MULT,MULTI — SHiADDO; ...;  — — 

Divide DIVU,DIVUI DIV,DIVU DS; ...; DS DIVW DIVX

Divide (trap if ovf) DIV,DIVI — — — —

And AND,ANDI AND,ANDI AND AND,ANDI AND

Or OR,ORI OR,ORI OR OR,ORI OR

Xor XOR,XORI XOR,XORI XOR XOR,XORI XOR

Figure continued on next pa
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Instruction Name DLX MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Arithmetic (continued)
(instruction formats) R–I R–I R–I, R–R R–I, R–R R–I, R–R

Load high part register LHI LUI LDIL ADDIS SETHI (B fmt.)

Shift left logical SLL,SLLI SLLV,SLL ZDEP 31-i, 
32-i

RLWINM SLL

Shift right logical SRL,SRLI SRLV,SRL EXTRU 31, 32-i RLWINM 32-i SRL

Shift right arithmetic SRA,SRAI SRAV,SRA EXTRS 31, 32-i SRAW SRA

Compare S_( <, >, ≤, ≥,
=, ≠)

SLT/I,
SL/ITU

COMB CMP(I)CLR SUBcc r0,...

Control 
(instruction formats) B, J/C B, J/C B, J/C B, J/C B, J/C

Branch on integer
compare

BEQ,BNE BEQ,BNE,
B_Z
(<,>, ≤, ≥)

COMB, COMIB BC BR_Z, BPcc
( <, >, ≤, ≥, =, ≠)

Branch on floating-
point compare

BFPT,BFPF BC1T,BC1F FSTWX f0; LDW  
t; BB t

BC FBPfcc 
( <, >, ≤, ≥, =,...)

Jump, jump register J,JR J,JR BL r0, BLR r0 B, BCLR, 
BCCTR

BA, JMPL 
r0,...

Call, call register JAL,JALR JAL,JALR BL, BLE BL,BLA, 
BCLRL, 
BCCTRL

CALL, JMPL

Trap TRAP BREAK BREAK TW, TWI Ticc, SIR

Return from interrupt RFE JR; RFE RFI,RFIR RFI DONE, RETRY, 
RETURN

Floating point 
(instruction formats) R–R R–R R–R R–R R–R

Add single, double ADDF,
ADDD

ADD.S,
ADD.D

FADD
FADD/dbl

FADDS,
FADD

FADDS,
FADDD

Sub single, double SUBF,
SUBD

SUB.S, 
SUB.D

FSUB
FSUB/dbl

FSUBS,
FSUB

FSUBS,
FSUBD

Mult single, double MULF,
MULD

MUL.S,
MUL.D

FMPY
FMPY/dbl

FMULS,
FMUL

FMULS,
FMULD

Div single, double DIVF,
DIVD

DIV.S, 
DIV.D

FDIV,
FDIV/dbl

FDIVS,
FDIV

FDIVS,
FDIVD

Compare _F, _D
( <, >, ≤, ≥, =,
...)

C_.S,  C_.D 
( <, >, ≤, ≥, =, 
...)

FCMP, FCMP/
dbl
( <, =, >)

FCMP FCMPS,
FCMPD

Move R–R MOVF MOV.S FCPY FMV FMOVS/D/Q

Convert
(single,double,integer)
to
 (single,double,integer) 

CVTF2D,
CVTD2F,
CVTF2I,
CVTD2I,
CVTI2F,
CVTI2D

CVT.S.D, 
CVT.D.S,
CVT.S.W, 
CVT.D.W,
CVT.W.S,
CVT.W.D

FCNVFF,s,d
FCNVFF,d,s
FCNVXF,s,s
FCNVXF,d,d
FCNVFX,s,s
FCNVFX,d,s

—,
FRSP,
—,
FCTIW,
—,
—

FSTOD,
FDTOS,
FSTOI,
FDTOI,
FITOS,
FITOD

Figure continued on next pa
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Compare and Conditional Branch

SPARC uses the traditional four condition code bits stored in the program s
word: negative, zero, carry, and overflow. They can be set on any arithmetic o
logical instruction; unlike earlier architectures, this setting is optional on each
struction. An explicit option leads to fewer problems in pipelined implemen
tion. Although condition codes can be set as a side effect of an operation, ex
compares are synthesized with a subtract using r0  as the destination. SPARC
conditional branches test condition codes to determine all possible unsigne
signed relations. Floating point uses separate condition codes to encode the
754 conditions, requiring a floating-point compare instruction. Version 9 expa
ed SPARC branches in four ways: a separate set of condition codes for 64-b
erations; a branch that tests the contents of a register and branches if the v
=,≠,<,≤,≥, or ≥ 0 (see MIPS below); three more sets of floating-point condit
codes; and branch instructions that encode static branch prediction. 

PowerPC also uses four condition codes: less than, greater than, equal, and
summary overflow, but it has eight copies of them. This redundancy allows 
PowerPC instructions to use different condition codes without conflict, essen
ly giving PowerPC eight extra 4-bit registers. Any of these eight condition co
can be the target of a compare instruction, and any can be the source of a 
tional branch. The integer instructions have an option bit that behaves as if th
teger op was followed by a compare to zero that sets the first condition “regi
PowerPC also lets the second “register” be optionally set by floating-p
instructions. PowerPC provides logical operations among these eight 4-bit c
tion code registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more
complex conditions to be tested by a single branch.

Instruction Name DLX MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Conventions

Register with value 0 r0 r0 r0 r0 (ad-
dressing)

r0

Return address reg. r31 r31 r2, r31 link 
(special)

r31

No-op ADD 
r0,r0,r0

SLL 
r0,r0,r0

OR r0,r0,r0 ORI 
r0,r0,#0

SETHI r0,0

Move R–R integer ADD 
...,r0,...

ADD 
...,r0,...

OR ...,r0,... OR rx, ry, 
ry

OR ...,r0,...

Operand order OP 
Rd,Rs1,Rs2

OP 
Rd,Rs1,Rs2

OP Rs1,Rs2,Rd OP 
Rd,Rs1,Rs2

OP Rs1,Rs2,Rd

FIGURE C.5 Instructions equivalent to DLX.  Dashes mean the operation is not available in that architecture, or not syn-
thesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several choices
of instructions equivalent to DLX, they are separated by commas. Note that in the “Arithmetic, logical” category all machines
but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC offers immediate versions of
these instructions but uses a single mnemonic. (Of course these are separate opcodes!)
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MIPS uses the contents of registers to evaluate conditional branches. An
registers can be compared for equality (BEQ) or inequality (BNE) and then the
branch is taken if the condition holds. The set-on-less-than instructions (SLT,
SLTI , SLTU, SLTIU ) compare two operands and then set the destination regist
1 if less and to 0 otherwise. These instructions are enough to synthesize th
set of relations. Because of the popularity of comparisons to 0, MIPS incl
special compare-and-branch instructions for all such comparisons: greater th
equal to zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ),
and less than zero (BLTZ). Of course, equal and not equal to zero can be syn
sized using r0  with BEQ and BNE. Like SPARC, MIPS I uses a condition code fo
floating point with separate floating-point compare and branch instructi
MIPS IV expands this to eight floating-point condition codes, with the floati
point comparisons and branch instructions specifying the condition to set or 

PA-RISC has many branch options, which we’ll see in section C.8. The m
straightforward is a compare and branch instruction (COMB), which compares two
registers, then branches depending on the standard relations, and tests the
significant bit of the result of the comparison.

Figure C.6 summarizes the four schemes used for conditional branches.

Figure C.7 lists instructions not found in Figure C.5 in the same four catego
Instructions are put in this list if they appear in more than one of the four a
tectures. The instructions are defined using the hardware description lang
which is described on the page facing the inside back cover.

DLX MIPS IV PA-RISC 1.1 PowerPC SPARC  V9

Number of condition code bits 
(integer and FP)

1 FP 8 FP 1 FP 8 × 4 both 2 × 4 integer,
4 × 2 FP

Basic compare instructions
(integer and FP)

1 integer,
1 FP

1 integer,
1 FP

4 integer, 
1 FP

4 integer,
2 FP

1 FP

Basic branch instructions
(integer and FP)

1 integer,
1 FP

2 integer,
1 FP

7 integer 1 both 3 integer,
1 FP

Compare register with register/
const and branch

=,≠ =,≠ =,≠,<,≤,>,≥, 
even, odd

— —

Compare register to zero and 
branch

=,≠ =,≠,<,≤,>,≥ =,≠,<,≤,>,≥, 
even, odd

— =,≠,<,≤,>,≥

FIGURE C.6 Summary of five approaches to conditional branches.  Floating-point branch on PA-RISC is accom-
plished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP
comparison bit. Integer compare on  SPARC is synthesized with an arithmetic instruction that sets the condition codes using
r0  as the destination. PA-RISC 2.0 will have eight floating-point condition code bits.

C.4 Instructions: Common Extensions to DLX



C-10 Appendix C   Survey of RISC Architectures

e

Name Definition MIPS IV PA-RISC 1.1 PowerPC SPARC  V9

Data transfer

Atomic swap R/M
(for semaphores)

Temp←Rd;
Rd← Mem[x]; 
Mem[x]←Temp

LL;SC — (see C.8) LWARX; 
STWCX

CASA,
CASX

Load 64-bit integer Rd←64 Mem[x] LD (in 2.0) LD LDX

Store  64-bit int. Mem[x]←64 Rd SD (in 2.0) STD STX

Load 32-bit int. 
unsigned

Rd32..63←32 Mem[x]; 
Rd0..31 ←32 0

LWU (in 2.0) LWZ LDUW

Load 32-bit int. 
signed

Rd32..63←32 Mem[x]; 

Rd0..31 ←32 Mem[x]0
32

LW (in 2.0) LWA LDSW

Prefetch Cache[x]←hint PREF, PREFX LDWX, LDWS, 
STWX,STWS

DCBT, 
DCBTST

PREFETCH

Load coprocessor Coprocessor←Mem[x] LWCi CLDWX,CLDWS — —

Store coprocessor Mem[x]←Coprocessor SWCi CSTWX,CSTWS — —

Endian (Big/Little Endian?) Either Either Either Either

Cache flush (Flush cache block at
this address)

CP0op FDC, FIC DCBF FLUSH

Shared memory 
synchronization

(All prior data transfers 
complete before next  
data transfers may start)

SYNC SYNC SYNC MEMBAR

Arithmetic, logical

64-bit integer 
arithmetic ops

Rd←64Rs1 op64 Rs2 DADD,DSUB 
DMULT, DDIV

(in 2.0) ADD,SUBF,
MULLD, 
DIVD

ADD,
SUB, MULX,
S/UDIVX

64-bit integer 
logical ops

Rd←64Rs1 op64 Rs2 AND,OR,XOR (in 2.0) AND,OR,XOR AND,OR,XOR

64-bit shifts Rd←64Rs1 op64 Rs2 DSLL,DSRA, 
DSRL

(in 2.0) SLD,SRAD,
SRLD

SLLX,
SRAX, SRLX

Conditional move if (cond) Rd← Rs MOVN/Z SUBc,n;
ADD 

— MOVcc, 
MOVr

Support for multi-
word integer add 

CarryOut,Rd ← Rs1 +
Rs2 + OldCarryOut

ADU;SLTU;
ADDU

ADDC ADDC, 
ADDE.

ADDcc

Support for multi-
word integer sub

CarryOut,Rd ← Rs1 
Rs2 + OldCarryOut

SUBU;SLTU;
SUBU

SUBB SUBFC, 
SUBFE.

SUBcc

And not Rd ← Rs1 & ~(Rs2) — ANDCM ANDC ANDN

Or not Rd ← Rs1 | ~(Rs2) — — ORC ORN

Add high 
immediate

Rd0..15←Rs10..15 +
(Const<<16);

— ADDIL (R–I) ADDIS 
(R–I)

—

Coprocessor 
operations

(Defined by
coprocessor)

COPi COPR,i — IMPDEPi

Figure continued on next pag
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Although most of the categories are self-explanatory, a few bear commen

■ The “atomic swap” row means a primitive that can exchange a register 
memory without interruption. This is useful for operating system semaph
in uniprocessor as well as for multiprocessor synchronization (see sectio
of Chapter 8).

■ The 64-bit data transfer and operation rows show how MIPS, PowerPC,
SPARC define 64-bit addressing and integer operations. SPARC simply de
all register and addressing operations to be 64 bits, adding only special in
tions for 64-bit shifts, data transfers, and branches. MIPS includes the sam
tensions, plus it adds separate 64-bit signed arithmetic instructions. Pow
added 64-bit right shift, load, store, divide, and compare and has a separate
determining whether instructions are interpreted as 32- or 64-bit operations
bit operations will not work in a machine that only supports 32-bit mode. P
RISC is expanded to 64-bit addressing and operations in version 2.0.

■ The “prefetch” instruction supplies an address and hint to the implementa
about the data. Hints include that the data is likely to be read or written s

Name Definition MIPS IV PA-RISC 1.1 PowerPC SPARC  V9

Control

Optimized delayed
branches

(Branch not always 
delayed )

BEQL,BNEL, 
B_ZL 
( <, >, ≤, ≥)

COMBT,n, 
COMBF,n

— BPcc,A
FPBcc,A

Conditional trap if (COND) 
{R31←PC; PC ←0..0#i}

T_,T_I  
( =, ≠, <, >, ≤, ≥)

SUBc,n;
BREAK

TW, TD,
TWI, TDI

Tcc

No. control regs. Misc. regs (virtual 
memory, interrupts,...)

≈12 32 33 29 

Floating point

Multiply & Add Fd ←  ( Fs1 × Fs2) + Fs3 MADD.S/D — (see C.8) FMADD/S

Multiply & Sub Fd ←  ( Fs1 × Fs2) – Fs3 MSUB.S/D — (see C.8) FMSUB/S

Neg Mult & Add Fd ← –(( Fs1 × Fs2)+Fs3) NMADD.S/D FNMADD/S

Neg Mult & Sub Fd ←–(( Fs1 × Fs2)–Fs3) NMSUB.S/D FNMSUB/S

Square Root Fd ← SQRT(Fs) SQRT.S/D FSQRTsgl/
dbl

FSQRT/S FSQRTS/D

Conditional Move if (cond) Fd←Fs MOVF/T,
MOVF/T.S/D,

FTEST;FCPY — FMOVcc

Negate Fd ← Fs ^ x80000000 NEG.S/D (in 2.0) FNEG FNEGS/D/Q

Absolute value Fd ← Fs & x7FFFFFFF ABS.S/D FABS/dbl FABS FABSS/D/Q

FIGURE C.7 Instructions not found in DLX but found in two or more of the four architectures. 
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likely to be read or written only once, or likely to be read or written many tim
Prefetch does not cause exceptions. MIPS has a version that adds two re
to get the address for floating-point programs, unlike non-floating-point M
programs. (See pages 412–414 in Chapter 5 to learn more about prefetch

■ In the “Endian” row, “Big or Little” means there is a bit in the program sta
register that allows the processor to act either as Big Endian or Little En
(see page 73 in Chapter 2). This can be accomplished by simply complem
ing some of the least-significant bits of the address in data transfer instruct

■ The “shared memory synchronization” helps with cache-coherent multi-
processors: All loads and stores executed before the instruction must com
before loads and stores after it can start. (See section 8.5 of Chapter 8.)

■ The “coprocessor operations” row lists several categories that allow for the
cessor to be extended with special-purpose hardware.

One difference that needs a longer explanation is the optimized branches. F
C.8 shows the options. The PowerPC offers branches that take effect immed
like branches on earlier architectures. This avoids executing NOPs when there
instruction to fill the delay slot; all the rest offer delayed branches. The other 
provide a version of delayed branch that makes it easier to fill the delay slot
SPARC “annulling” branch executes the instruction in the delay slot only if 
branch is taken; otherwise the instruction is annulled. This means the instruct
the target of the branch can safely be copied into the delay slot since it will 
be executed if the branch is taken. The restrictions are that the target is not a
er branch and that the target is known at compile time. (SPARC also offers a
delayed jump because an unconditional branch with the annul bit set doenot
execute the following instruction.) Recent versions of the MIPS architecture 
added a branch likely instruction that also annuls the following instruction if
branch is not taken. PA-RISC allows almost any instruction to annul the nex
struction, including branches. Its “nullifying” branch option will execute the n
instruction depending on the direction of the branch and whether it is taken 
if a forward branch is not taken or a backward branch is taken). Presumably 
choice was made to optimize loops, allowing the instructions following the 
branch and the looping branch to execute in the common case.

Now that we have covered the similarities, we will focus on the unique 
tures of each architecture, ordering them by length of description of the un
features from shortest to longest.

 (Plain) Branch Delayed branch Annulling delayed branch

Found in architectures PowerPC DLX, MIPS,
PA-RISC, SPARC

MIPS, SPARC PA-RISC

Execute following 
instruction

Only if branch 
not taken

Always Only if branch taken If forward branch not 
taken or backward 
branch taken

FIGURE C.8 When the instruction following the branch is executed for three types of branches.
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MIPS has gone through four generations of instruction set evolution, and
evolution has generally added features found in other architectures. Here a
salient unique features of MIPS, the first several of which were found in the o
inal instruction set. 

Nonaligned Data Transfers

MIPS has special instructions to handle misaligned words in memory. A 
event in most programs, it is included for COBOL programs where the progr
mer can force misalignment by declarations. Although most RISCs trap if you
to load a word or store a word to a misaligned address, on all architectures
aligned words can be accessed without traps by using four load byte instruc
and then assembling the result using shifts and logical ORs. The MIPS load and
store word left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in
just two instructions: LWL loads the left portion of the register and LWR loads the
right portion of the register. SWL and SWR do the corresponding stores. Figure C
shows how they work. There are also 64-bit versions of these instructions.

TLB Instructions

TLB misses are handled in software in MIPS, so the instruction set also ha
structions for manipulating the registers of the TLB (see pages 455–456 in C
ter 5 for more on TLBs). These registers are considered part of the “sy
coprocessor” and thus can be accessed by the instructions that move betwe
processor registers and integer registers. The contents of a TLB entry are re
loading via read indexed TLB entry (TLBR) and written using either write indexed
TLB entry (TLBWI) or write random TLB entry (TLBWR). The TLB contents are
searched using probe TLB for matching entry (TLBP).

Remaining Instructions

Below is a list of the remaining unique details of the MIPS architecture:

■ NOR—This logical instruction calculates ~(Rs1 | Rs2).

■ Constant shift amount—Non-variable shifts use the 5-bit constant field show
in the register-register format in Figure C.3.

■ SYSCALL—This special trap instruction is used to invoke the operat
system.

■ Move to/from control registers—CTCi  and CFCi  move between the intege
registers and control registers.

C.5 Instructions Unique to MIPS
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■ Jump/call not PC-relative—The 26-bit address of jumps and calls is not add
to the PC. It is shifted left 2 bits and replaces the lower 28 bits of the PC. 
would only make a difference if the program were located near a 256-
boundary.

■ Load linked/store conditional—This pair of instructions gives MIPS atomic op
erations for semaphores, allowing data to be read from memory, modified
stored without fear of interrupts or other machines accessing the data
multiprocessor (see section 8.5 of Chapter 8). There are both 32- and 6
versions of these instructions.

■ Reciprocal and reciprocal square root—These instructions, which do not fol-
low IEEE 754 guidelines of proper rounding, are included apparently for ap
cations that value speed of divide and square root more than they v
accuracy.

FIGURE C.9 MIPS instructions for unaligned word reads.  This figure assumes opera-
tion in Big Endian mode. Case 1 first loads the 3 bytes 101,102, and 103 into the left of R2,
leaving the least-significant byte undisturbed. The following LWR simply loads byte 104 into
the least-significant byte of R2, leaving the other bytes of the register unchanged using LWL.
Case 2 first loads byte 203 into the most-significant byte of R4, and the following LWR loads
the other 3 bytes of R4 from memory bytes 204, 205, and 206. LWL reads the word with the
first byte from memory, shifts to the left to discard the unneeded byte(s), and changes only
those bytes in Rd. The byte(s) transferred are from the first byte until the lowest-order byte of
the word. The following LWR addresses the last byte, right shifts to discard the unneeded
byte(s), and finally changes only those bytes of Rd. The byte(s) transferred are from the last
byte up to the highest-order byte of the word. Store word left (SWL) is simply the inverse of
LWL, and store word right (SWR) is the inverse of LWR. Changing to Little Endian mode flips
which bytes are selected and discarded. (If big-little, left-right, load-store seem confusing,
don’t worry, it works!)

100 101 102 103

104 105 106 107

200 201 202 203

204 205 206 207

Case 1
Before

After

After

M[100] D DA V

M[104]

R2

R2

R2

E

J

D

D

O

A

A

H

V

V

N

N

E

LWL R2, 101:

LWR R2, 104:

Case 2
Before

After

After

M[200]

M[204]

R4

R4

R4

A V E

J

D

D

O

O

A

H

H

V

N

N

E

LWL R4,  203:

LWR R4,  206:



C.6 Instructions Unique to SPARC C-15

d

a PC-

cu-
ions
pts
pos-

 for
used,
 the
a cir-
urve

sters
 (Giv-
 have
128 to
ons,

er-
 call-
the
 the

uc-
tion
me.
e. 
ould
 The
ture
nera-
e for
■ Conditional procedure call instructions—BGEZAL saves the return address an
branches if the content of Rs1 is greater than or equal to zero, and BLTZAL does
the same for less than zero. The purpose of these instructions is to get 
relative call. (There are “likely” versions of these instructions as well.)

There is no specific provision in the MIPS architecture for floating-point exe
tion to proceed in parallel with integer execution, but the MIPS implementat
of floating point allow this to happen by checking to see if arithmetic interru
are possible early in the cycle (see Appendix A). Normally interrupts are not 
sible when integer and floating point operate in parallel.

Several features are unique to SPARC.

Register Windows

The primary unique feature of SPARC is register windows, an optimization
reducing register traffic on procedure calls. Several banks of registers are 
with a new one allocated on each procedure call. Although this could limit
depth of procedure calls, the limitation is avoided by operating the banks as 
cular buffer, providing unlimited depth. The knee of the cost-performance c
seems to be six to eight banks. 

SPARC can have between two and 32 windows, typically using eight regi
each for the globals, locals, incoming parameters, and outgoing parameters.
en each window has 16 unique registers, an implementation of SPARC can
as few as 40 physical registers and as many as 520, although most have 
136, so far.) Rather than tie window changes with call and return instructi
SPARC has the separate instructions SAVE and RESTORE. SAVE is used to “save”
the caller’s window by pointing to the next window of registers in addition to p
forming an add instruction. The trick is that the source registers are from the
er’s window of the addition operation, while the destination register is in 
callee’s window. SPARC compilers typically use this instruction for changing
stack pointer to allocate local variables in a new stack frame. RESTORE is the in-
verse of SAVE, bringing back the caller’s window while acting as an add instr
tion, with the source registers from the callee’s window and the destina
register in the caller’s window. This automatically deallocates the stack fra
Compilers can also make use of it for generating the callee’s final return valu

The danger of register windows is that the larger number of registers c
slow down the clock rate. This was not the case for early implementations.
SPARC architecture (with register windows) and the MIPS R2000 architec
(without) have been built in several technologies since 1987. For several ge
tions the SPARC clock rate has not been slower than the MIPS clock rat

C.6 Instructions Unique to SPARC
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implementations in similar technologies, probably because cache-access 
dominate register-access times in these implementations. The current gene
machines took different implementation strategies—superscalar vs. super
lining—and it’s unlikely that the number of registers by themselves determ
the clock rate in either machine. 

Another data transfer feature is alternate space option for loads and s
This simply allows the memory system to identify memory accesses to input
put devices, or to control registers for devices such as the cache and me
management unit.

Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single
of traps to at least four levels, allowing the window overflow and underflow 
handlers to be interrupted. The extra levels mean the handler does not ne
check for page faults or misaligned stack pointers explicitly in the code, the
making the handler faster. Two new instructions were added to return from
multilevel handler: RETRY (which retries the interrupted instruction) and DONE

(which does not). To support user-level traps, the instruction RETURN will return
from the trap in nonprivileged mode.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction.
designers of SPARC spent some time thinking about languages like LISP
Smalltalk, and this influenced some of the features of SPARC already discu
register windows, conditional trap instructions, calls with 32-bit instruction 
dresses, and multiword arithmetic (see Taylor et al. [1986] and Ungar e
[1984]). A small amount of support is offered for tagged data types with op
tions for addition, subtraction, and hence comparison. The two least-signifi
bits indicate whether the operand is an integer (coded as 00), so TADDcc and
TSUBcc set the overflow bit if either operand is not tagged as an integer or i
result is too large. A subsequent conditional branch or trap instruction can d
what to do. (If the operands are not integers, software recovers the oper
checks the types of the operands, and invokes the correct operation bas
those types.) It turns out that the misaligned memory access trap can also 
to use for tagged data, since loading from a pointer with the wrong tag can 
invalid access. Figure C.10 shows both types of tag support.

Overlapped Integer and Floating-Point Operations

SPARC allows floating-point instructions to overlap execution with integer 
structions. To recover from an interrupt during such a situation, SPARC h
queue of pending floating-point instructions and their addresses. RDPR allows the
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processor to empty the queue. The second floating-point feature is the incl
of floating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ.

Remaining Instructions

The remaining unique features of SPARC are

■ JMPL uses Rd to specify the return address register, so specifying r31  makes it
similar to JALR in DLX and specifying r0  makes it like JR.

■ LDSTUB loads the value of the byte into Rd and then stores FF16 into the ad-
dressed byte. This version 8 instruction can be used to implement a sema

■ CASA (CASXA) atomically compares a value in a processor register to 32
(64-bit) value in memory; if and only if they are equal, it swaps the value
memory with the value in a second processor register. This version 9 instru
can be used to construct wait-free synchronization algorithms that do no
quire the use of locks.

■ XNOR calculates the exclusive or with the complement of the second oper

FIGURE C.10 SPARC uses the two least-significant bits to encode different data
types for the tagged arithmetic instructions.  (a) Integer arithmetic, which takes a single
cycle as long as the operands and the result are integers. (b) The misaligned trap can be
used to catch invalid memory accesses, such as trying to use an integer as a pointer. For
languages with paired data like LISP, an offset of –3 can be used to access the even word of
a pair (CAR) and +1 can be used for the odd word of a pair (CDR).

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, -3

+
–

–
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■ BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler c
give hints to the machine about whether a branch is likely to be taken or n

■ ILLTRAP  causes an illegal instruction trap. Muchnick [1988] explains how t
is used for proper execution of aggregate returning procedures in C.

■ POPC counts the number of bits set to one in an operand.

■ Non-faulting loads allow compilers to move load instructions ahead of con
tional control structures that control their use.  Hence, non-faulting loads
be executed speculatively.

■ Quadruple precision floating-point arithmetic and data transfer allow the
floating-point registers to act as eight 128-bit registers for floating-point o
ations and data transfers. 

■ Multiple-precision floating-point results for multiply mean that two single-
precision operands can result in a double-precision product and two do
precision operands can result in a quadruple-precision product. These in
tions can be useful in complex arithmetic and some models of floating-p
calculations. 

PowerPC is the result of several generations of IBM commercial RISC mach
IBM RT/PC, IBM Power-1, and IBM Power-2.

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the ret
dress on procedure call, PowerPC puts the address into a special register
the link register. Since many procedures will return without calling another p
cedure, link doesn’t always have to be saved away. Making the return addr
special register makes the return jump faster since the hardware need n
through the register read pipeline stage for return jumps.

In a similar vein, PowerPC has a count register to be used in for loops where
the program iterates for a fixed number of times. By using a special registe
branch hardware can determine quickly whether a branch based on the cou
ister is likely to branch, since the value of the register is known early in the 
cution cycle. Tests of the value of the count register in a branch instruction
automatically decrement the count register.

Given that the count register and link register are already located with
hardware that controls branches, and that one of the problems in branch p
tion is getting the target address early in the pipeline (see Chapter 3, section
the PowerPC architects decided to make a second use of these registers.

C.7 Instructions Unique to PowerPC
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register can hold a target address of a conditional branch. Thus PowerPC s
ments its basic conditional branch with two instructions that get the targe
dress from these registers (BCLR, BCCTR).

Remaining Instructions

Unlike other RISC machines, register 0 is not hardwired to the value 0. It ca
be used as a base register, but in base+index addressing it can be used as
dex. The other unique features of the PowerPC are

■ Load multiple and store multiple save or restore up to 32 registers in a sing
instruction. 

■ LSW and STSW permit fetching and storing of fixed and variable-length strin
that have arbitrary alignment.

■ Rotate with mask instructions support bit field extraction and insertion. O
version rotates the data and then performs logical AND with a mask of ones,
thereby extracting a field. The other version rotates the data but only place
bits into the destination register where there is a corresponding 1 bit in
mask, thereby inserting a field.

■ Algebraic right shift sets the carry bit (CA) if the operand is negative and an
one bits are shifted out. Thus a signed divide by any constant power of two
rounds toward zero can be accomplished with a SRAWI followed by ADDZE,
which adds CA to the register.

■ CBTLZ will count leading zeros.

■ SUBFIC computes (immediate – RA), which can be used to develop a one
two’s complement.

■ Logical shifted immediate instructions shift the 16-bit immediate to the left 1
bits before performing AND, OR, or XOR.

PA-RISC was expanded slightly in 1990 with version 1.1 and changed sig
cantly in 2.0 with 64-bit extensions that will be in systems shipped in 1996. 
RISC perhaps has the most unusual features of any commercial RISC ma
For example, it has the most addressing modes, instruction formats, and, 
shall see, several instructions that are really the combination of two simple
structions.

C.8 Instructions Unique to PA-RISC
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Nullification

As shown in Figure C.8 on page C-12, several RISC machines can choose 
execute the instruction following a delayed branch, in order to improve utiliza
of the branch slot. This is called nullification in PA-RISC, and it has been genera
ized to apply to any arithmetic-logical instruction as well as to all branches. T
an add instruction can add two operands, store the sum, and cause the foll
instruction to be skipped if the sum is zero. Like conditional move instructio
nullification allows PA-RISC to avoid branches in cases where there is just on
struction in the then  part of an if  statement.

A Cornucopia of Conditional Branches

Given nullification, PA-RISC did not need to have separate conditional branc
structions. The inventors could have recommended that nullifying instruct
precede unconditional branches, thereby simplifying the instruction set. Ins
PA-RISC has the largest number of conditional branches of any RISC mac
Figure C.11 shows the conditional branches of PA-RISC. As you can see, se
are really combinations of two instructions.   

Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be syn
sized in software. Instructions that shift one operand 1, 2, or 3 bits and then

Name Instruction Notation

COMB Compare and branch if (cond(Rs1,Rs2)) {PC ← PC + offset12}

COMIB Compare imm. and branch if (cond(imm5,Rs2)) {PC ← PC + offset12}

MOVB Move and branch Rs2 ← Rs1,
if (cond(Rs1,0)) 

{PC ← PC + offset12}

MOVIB Move immediate and branch Rs2 ← imm5,
if (cond(imm5,0)) 

{PC ← PC + offset12}

ADDB Add and branch Rs2 ← Rs1 + Rs2,
if (cond(Rs1 + Rs2,0)) 

{PC ← PC + offset12}

ADDIB Add imm. and branch Rs2 ← imm5 + Rs2,
if (cond(imm5 + Rs2,0)) 

{PC ← PC + offset12}

BB Branch on bit if (cond(Rs p,0) {PC ← PC + offset12}

BVB Branch on variable bit if (cond(Rs sar ,0) {PC ← PC + offset12}

FIGURE C.11 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12  in this table, and the
5-bit immediate is called imm5. The 16 conditions are =, <, ≤, odd, signed overflow, unsigned no overflow, zero or no over-
flow unsigned, never, and their respective complements. The BB instruction selects one of the 32 bits of the register and
branches depending if its value is 0 or 1. The BVB selects the bit to branch using the shift amount register, a special-purpose
register. The subscript notation specifies a bit field.
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trapping or not on overflow, are useful in multiplies. Divide step performs 
critical step of nonrestoring divide, adding or subtracting depending on the 
of the prior result. Magenheimer et al. [1988] measured the size of operan
multiplies and divides to show how well the multiply step would work. Usi
these data for C programs, Muchnick [1988] found that by making special c
the average multiply by a constant takes 6 clock cycles and multiply of varia
takes 24 clock cycles. PA-RISC has 10 instructions for these operations.

The original SPARC architecture used similar optimizations, but with incre
ing number of transistors the instruction set was expanded to include full m
ply and divide operations. PA-RISC gives some support along these line
putting a full 32-bit integer multiply in the floating-point unit; however, the int
ger data must first be moved to floating-point registers.

Decimal Operations

COBOL programs will compute on decimal values, stored as 4 bits per d
rather than converting back and forth between binary and decimal. PA-RISC
instructions that will convert the sum from a normal 32-bit add into proper d
mal digits. It also provides logical and arithmetic operations that set the cond
codes to test for carries of digit, bytes, or half words. These operations als
whether bytes or half words are zero. These operations would be useful in 
metic on 8-bit ASCII characters. Five PA-RISC instructions provide decimal s
port.

Remaining Instructions

Here are some remaining PA-RISC instructions:

■ Branch vectored shifts an index register left 3 bits, adds it to a base register
then branches to the calculated address. It is used for case statements. 

■ Extract and deposit instructions allow arbitrary bit fields to be selected from 
inserted into registers. Variations include whether the extracted field is s
extended, whether the bit field is specified directly in the instruction or indire
in another register, and whether the rest of the register is set to zero or le
changed. PA-RISC has 12 such instructions.

■ To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which
adds a left-adjusted 21-bit constant to a register and places the result in re
1. The following data transfer instruction uses offset addressing to add the
er 11 bits of the address to register 1. This pair of instructions allows PA-R
to add a 32-bit constant to a base register, at the cost of changing registe

■ PA-RISC has nine debug instructions that can set breakpoints on instructi
data addresses and return the trapped addresses.
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■ Load and clear instructions provide a semaphore that reads a value from m
ory and then writes zero.

■ Store bytes short optimizes unaligned data moves, moving either the leftm
or the rightmost bytes in a word to the effective address depending on th
struction options and condition code bits.

■ Loads and stores work well with caches by having options that give hints a
whether to load data into the cache if it’s not already in the cache. For exam
load with a destination of register 0 is defined to be a cache hint.

■ Multiply/add and multiply/subtract are floating-point operations that ca
launch two independent floating-point operations in a single instruction. 
sion 2.0 of PA-RISC will have fused multiply-add like the PowerPC.

In addition to instructions, here are a few features that distinguish PA-RISC:

■ The segmented address space above the 232 boundary means that there must b
instructions to manipulate the segment registers and branch instructions
can leave the current segment.

■ The data addressing modes use either a 14-bit offset or a 5-bit offset, an
sum of the base register and the immediate can be used to update the ba
ister. The decision of whether to use only the base register or the sum as t
fective address is optional. For 5-bit offsets there is a bit in the instruction
makes the decision, but in the 14-bit offsets it depends on the sign bit o
Negative means use the sum, positive means use the register. These optio
the standard 6-integer data transfers into 20 instructions. PA-RISC 2.0 m
the set of addressing options more orthogonal.

This appendix covers the addressing modes, instruction formats, and all ins
tions found in four recent RISC architectures. Although the later sections 
centrate on the differences, it would not be possible to cover four architectur
these few pages if there were not so many similarities. In fact, we would g
that more than 90% of the instructions executed for any of these architec
would be found in Figure C.5 on pages C-6–C-8. To contrast this homogen
Figure C.12 gives a summary for four architectures from the 1970s in a fo
similar to that shown in Figure C.1 on page C-2. (Imagine trying to write a sin
appendix in this style for those architectures.) In the history of computing, t
has never been such widespread agreement on computer architecture. 

C.9 Concluding Remarks
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This style of architectures cannot remain static, however. Like people, ins
tion sets tend to get bigger as they get older. Figure C.13 shows the geneal
these instruction sets, and Figure C.14 shows which features were added to
leted from generations of machines over time.    
   

IBM 360/370 Intel 8086 Motorola 68000 DEC VAX

Date announced 1964/1970 1978 1980 1977

Instruction size(s) (bits) 16,32,48 8,16,24,32, 40,48 16,32,48,64,80 8,16,24,32,..., 4

Addressing (size, model) 24 bits, flat/ 
31 bits, flat

4+16 bits, 
segmented

24 bits, flat 32 bits, flat

Data aligned? Yes 360/ No 370 No 16-bit aligned No

Data addressing modes 2/3 5 9 ≥ 14

Protection Page None Optional Page

Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB

I/O Opcode Opcode Memory mapped Memory mapped

Integer registers (size, 
model, number)

16 GPR × 32 bits 8 dedicated data × 
16 bits

8 data & 8 address 
× 32 bits

15 GPR × 32 bits

Separate floating-point 
registers

4 × 64 bits Optional: 
8 × 80 bits

Optional: 
8 × 80 bits

0

Floating-point format IBM (floating 
hexadecimal)

IEEE 754 single, 
double, extended

IEEE 754 single, 
double, extended

DEC

FIGURE C.12 Summary of four 1970s architectures.  Unlike the architectures in Figure C.1 on page C-2, there is little
agreement between these architectures in any category. (See Appendix D for more details on the 8086; in fact, the descrip-
tion of just this one machine is as long as this whole appendix!)
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FIGURE C.13 The lineage of RISC instruction sets. Commercial machines are shown in
plain text and research machines in bold . The CDC-6600 and Cray-1 were load-store ma-
chines with register 0 fixed at 0, and separate integer and floating-point registers. Instructions
could not cross word boundaries. An early IBM research machine led to the 801 and America
research projects, with the 801 leading to the unsuccessful RT/PC and America leading to the
successful Power architecture. Some people who worked on the 801 later joined Hewlett
Packard to work on the PA-RISC. The two university projects were the basis of MIPS and
SPARC machines. DEC shipped workstations using MIPS microprocessors for three years
before they brought out their own RISC instruction set, Alpha, which is very similar to MIPS III.
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Semaphore √ " " √ " + " " √ " "

Square root √ " " √ " + " " + "
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FIGURE C.14 Features added to RISC machines. √ means in the original machine, + means added later, " means con-
tinued from prior machine, and – means removed from architecture.
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	C.1
	Introduction
	We cover four examples of reduced instruction set computer (RISC) architec�tures in this appendix:
	Hewlett Packard PA-RISC
	IBM and Motorola PowerPC
	SGI MIPS
	SPARC, developed originally by Sun Microsystems
	We also include a discussion of DLX, the instruction set architecture invented for this book. (A ...
	Readers of the first edition will note that the Intel i860 and Motorola M88000 now sleep with the...
	DLX
	MIPS I
	PA-RISC
	PowerPC
	SPARC V8
	Date announced
	1990
	1986
	1986
	1993
	1987
	Instruction size (bits)
	32
	32
	32
	32
	32
	Address space (size, model)
	32 bits, flat
	32 bits, flat
	48 bits,
	segmented
	32 bits, flat
	32 bits, flat
	Data alignment
	Aligned
	Aligned
	Aligned
	Unaligned
	Aligned
	Data addressing modes
	2
	2
	5
	4
	2
	Protection
	Page
	Page
	Page
	Page
	Page
	Minimum page size
	4 KB
	4 KB
	4 KB
	4 KB
	8 KB
	I/O
	Memory mapped
	Memory mapped
	Memory mapped
	Memory mapped
	Memory mapped
	Integer registers (number, model, size)
	31 GPR ¥ 32 bits
	31 GPR ¥ 32 bits
	31 GPR ¥ 32 bits
	32 GPR ¥ 32 bits
	31 GPR ¥ 32 bits
	Separate floating-point registers
	32 ¥ 32 or 16 ¥ 64 bits
	16 ¥ 32 or 16 ¥ 64 bits
	56 ¥ 32 or 28 ¥ 64 bits
	32 ¥ 32 or 32 ¥ 64 bits
	32 ¥ 32 or 16 ¥ 64 bits
	Floating-point format
	IEEE 754 single, double
	IEEE 754 single, double
	IEEE 754 single, double
	IEEE 754 single, double
	IEEE 754 single, double
	FIGURE C.1� Summary of the first version of five recent architectures. Except for number of data ...

	After discussing the addressing modes and instruction for�mats of our four RISC architectures, we...
	Instructions found in DLX
	Instructions not found in DLX but found in two or more architectures
	The unique instructions and characteristics of each architecture
	We conclude with a speculation about the future directions for RISCs.
	The one complication in this second edition appendix is that some of the older RISCs have been ex...
	C.2
	Addressing Modes and Instruction Formats
	Figure C.2 shows the data addressing modes supported by each architecture. Since all have one reg...
	Addressing mode
	DLX
	MIPS IV
	PA-RISC 1.1
	PowerPC
	SPARC V9
	Register + offset (displacement or based)
	Ã
	Ã
	Ã
	Ã
	Ã
	Register + register (indexed)
	—
	Ã (FP)
	Ã
	Ã
	Ã
	Register + scaled register (scaled)
	—
	—
	Ã
	—
	—
	Register + offset & update register
	—
	—
	Ã
	Ã
	—
	Register + register & update register
	—
	—
	Ã
	Ã
	—
	FIGURE C.2� Summary of data addressing modes. PA-RISC also has short address versions of the offs...

	References to code are normally PC-relative, although register indirect is supported for returnin...
	Figure�C.3 shows the format of instructions, which includes the size of the address in the instru...
	FIGURE C.3� Instruction formats for five architectures. These four formats are found in all five ...

	Format: instruction category
	DLX
	MIPS IV
	PA-RISC 1.1
	PowerPC
	SPARC V9
	Branch: all
	Sign
	Sign
	Sign
	Sign
	Sign
	Jump/call: all
	Sign
	—
	Sign
	Sign
	Sign
	Register-immediate: data transfer
	Sign
	Sign
	Sign
	Sign
	Sign
	Register-immediate: arithmetic
	Sign
	Sign
	Sign
	Sign
	Sign
	Register-immediate: logical
	Sign
	Zero
	—
	Zero
	Sign
	FIGURE C.4� Summary of constant extension. The constants in the jump and call instructions of MIP...

	C.3
	Instructions: The DLX Subset
	The similarities of each architecture allow simultaneous descriptions, starting with the operatio...
	DLX Instructions

	Almost every instruction found in DLX is found in the other archi�tectures, as Figure�C.5 shows. ...
	Every architecture must have a scheme for compare and conditional branch, but despite all the sim...
	Instruction name
	DLX
	MIPS IV
	PA-RISC 1.1
	PowerPC
	SPARC V9
	Data transfer (instruction formats)
	R–I
	R–I
	R–I, R–R
	R–I, R–R
	R–I, R–R
	Load byte signed
	LB
	LB
	LDB; �EXTRS,8,31
	LBZ; EXTSB
	LDSB
	Load byte unsigned
	LBU
	LBU
	LDB,LDBX,LDBS
	LBZ
	LDUB
	Load half word signed
	LH
	LH
	LDH; EXTRS16,31
	LHA
	LDSH
	Load half word �unsigned
	LHU
	LHU
	LDH,LDHX,LDHS
	LHZ
	LDUH
	Load word
	LW
	LW
	LDW,LDWX, LDWS
	LW
	LD
	Load SP float
	LF
	LWC1
	FLDWX,FLDWS
	LFS
	LDF
	Load DP float
	LD
	LDC1
	FLDDX,FLDDS
	LFD
	LDDF
	Store byte
	SB
	SB
	STB,STBX,STBS
	STB
	STB
	Store half word
	SH
	SH
	STH,STHX,STHS
	STH
	STH
	Store word
	SW
	SW
	STW,STWX,STWS
	STW
	ST
	Store SP float
	SF
	SWC1
	FSTWX,FSTWS
	STFS
	STF
	Store DP float
	SD
	SWD1
	FSTDX,FSTDS
	STFD
	STDF
	Read, write special registers
	MOVS2I, MOVI2S
	MF, MT_
	MFCTL, MTCTL
	MFSPR, MF_, MTSPR, MT_
	RD,WR,� �RDPR,WRPR, LDXFSR, �STXFSR
	Move int. to FP reg.
	MOVI2FP
	MFC1
	STW; FLDWX
	STW; LDFS
	ST; LDF
	Move FP to int. reg.
	MOVFP2I
	MTC1
	FSTWX; LDW
	STFS; LW
	STF; LD
	Arithmetic, logical (instruction formats)
	R–R, R–I
	R–R, R–I
	R–R, R–I
	R–R, R–I
	R–R, R–I
	Add
	ADDU,ADDUI
	ADDU, ADDIU
	ADDL, LD0, �ADDI, UADDCM
	ADD,ADDI
	ADD
	Add (trap if overflow)
	ADD,ADDI
	ADD, ADDI
	ADDO, ADDIO
	ADDO; MCRXR; BC
	ADDcc; TVS
	Sub
	SUBU,SUBUI
	SUBU
	SUB,SUBI
	SUBF
	SUB
	Sub (trap if overflow)
	SUB,SUBI
	SUB
	SUBTO,SUBIO
	SUBF/oe
	SUBcc; TVS
	Multiply
	MULTU, MULTUI
	MULT, MULTU
	SHiADD; ...; (i=1,2,3)
	MULLW, MULLI
	MULX
	Multiply (trap if ovf)
	MULT,MULTI
	—
	SHiADDO; ...;
	—
	—
	Divide
	DIVU,DIVUI
	DIV,DIVU
	DS; ...; DS
	DIVW
	DIVX
	Divide (trap if ovf)
	DIV,DIVI
	—
	—
	—
	—
	And
	AND,ANDI
	AND,ANDI
	AND
	AND,ANDI
	AND
	Or
	OR,ORI
	OR,ORI
	OR
	OR,ORI
	OR
	Xor
	XOR,XORI
	XOR,XORI
	XOR
	XOR,XORI
	XOR
	Figure continued on next page
	Instruction Name
	DLX
	MIPS IV
	PA-RISC 1.1
	PowerPC
	SPARC V9
	Arithmetic (continued) (instruction formats)
	R–I
	R–I
	R–I, R–R
	R–I, R–R
	R–I, R–R
	Load high part register
	LHI
	LUI
	LDIL
	ADDIS
	SETHI (B fmt.)
	Shift left logical
	SLL,SLLI
	SLLV,SLL
	ZDEP 31-i, � 32-i
	RLWINM
	SLL
	Shift right logical
	SRL,SRLI
	SRLV,SRL
	EXTRU 31, 32-i
	RLWINM 32-i
	SRL
	Shift right arithmetic
	SRA,SRAI
	SRAV,SRA
	EXTRS 31, 32-i
	SRAW
	SRA
	Compare
	S_(<,>,²,³, =,�)
	SLT/I, SL/ITU
	COMB
	CMP(I)CLR
	SUBcc r0,...
	Control (instruction formats)
	B, J/C
	B, J/C
	B, J/C
	B, J/C
	B, J/C
	Branch on integer compare
	BEQ,BNE
	BEQ,BNE, B_Z (<,>,²,³)
	COMB, COMIB
	BC
	BR_Z, BPcc (<,>,²,³,=,�)
	Branch on floating- point compare
	BFPT,BFPF
	BC1T,BC1F
	FSTWX f0; LDW t; BB t
	BC
	FBPfcc (<,>,²,³,=,...)
	Jump, jump register
	J,JR
	J,JR
	BL r0, BLR r0
	B, BCLR, BCCTR
	BA, JMPL r0,...
	Call, call register
	JAL,JALR
	JAL,JALR
	BL, BLE
	BL,BLA, BCLRL, �BCCTRL
	CALL, JMPL
	Trap
	TRAP
	BREAK
	BREAK
	TW, TWI
	Ticc, SIR
	Return from interrupt
	RFE
	JR; RFE
	RFI,RFIR
	RFI
	DONE, RETRY, RETURN
	Floating point (instruction formats)
	R–R
	R–R
	R–R
	R–R
	R–R
	Add single, double
	ADDF, ADDD
	ADD.S, ADD.D
	FADD FADD/dbl
	FADDS, FADD
	FADDS, FADDD
	Sub single, double
	SUBF, SUBD
	SUB.S, SUB.D
	FSUB FSUB/dbl
	FSUBS, FSUB
	FSUBS, FSUBD
	Mult single, double
	MULF, MULD
	MUL.S, MUL.D
	FMPY FMPY/dbl
	FMULS, FMUL
	FMULS, FMULD
	Div single, double
	DIVF, DIVD
	DIV.S, DIV.D
	FDIV, FDIV/dbl
	FDIVS, FDIV
	FDIVS, FDIVD
	Compare
	_F, _D (<,>,²,³,=, ...)
	C_.S, C_.D (<,>,²,³,=, ...)
	FCMP, FCMP/ dbl (<,=,>)
	FCMP
	FCMPS, FCMPD
	Move R–R
	MOVF
	MOV.S
	FCPY
	FMV
	FMOVS/D/Q
	Convert (single,double,integer) to (single,double,integer)
	CVTF2D, CVTD2F, CVTF2I, CVTD2I, CVTI2F, CVTI2D
	CVT.S.D, CVT.D.S, CVT.S.W, CVT.D.W, CVT.W.S, CVT.W.D
	FCNVFF,s,d FCNVFF,d,s FCNVXF,s,s FCNVXF,d,d FCNVFX,s,s FCNVFX,d,s
	—, FRSP, —, FCTIW, —, —
	FSTOD, FDTOS, FSTOI, FDTOI, FITOS, FITOD
	Figure continued on next page
	Instruction Name
	DLX
	MIPS IV
	PA-RISC 1.1
	PowerPC
	SPARC V9
	Conventions
	Register with value 0
	r0
	r0
	r0
	r0 (addressing)
	r0
	Return address reg.
	r31
	r31
	r2, r31
	link �(special)
	r31
	No-op
	ADD r0,r0,r0
	SLL r0,r0,r0
	OR r0,r0,r0
	ORI r0,r0,#0
	SETHI r0,0
	Move R–R integer
	ADD ...,r0,...
	ADD ...,r0,...
	OR ...,r0,...
	OR rx, ry, ry
	OR ...,r0,...
	Operand order
	OP Rd,Rs1,Rs2
	OP Rd,Rs1,Rs2
	OP Rs1,Rs2,Rd
	OP Rd,Rs1,Rs2
	OP Rs1,Rs2,Rd
	FIGURE C.5� Instructions equivalent to DLX. Dashes mean the operation is not available in that ar...
	Compare and Conditional Branch

	SPARC uses the traditional four condition code bits stored in the program status word: negative, ...
	PowerPC also uses four condition codes: less than, greater than, equal, and summary overflow, but...
	MIPS uses the contents of registers to evaluate conditional branches. Any two registers can be co...
	PA-RISC has many branch options, which we’ll see in section C.8. The most straightforward is a co...
	Figure C.6 summarizes the four schemes used for conditional branches.
	DLX
	MIPS IV
	PA-RISC 1.1
	PowerPC
	SPARC V9
	Number of condition code bits (integer and FP)
	1 FP
	8 FP
	1 FP
	8 ¥ 4 both
	2 ¥ 4 integer, 4 ¥ 2 FP
	Basic compare instructions (integer and FP)
	1 integer, 1 FP
	1 integer, 1 FP
	4 integer, 1 FP
	4 integer, 2 FP
	1 FP
	Basic branch instructions (integer and FP)
	1 integer, 1 FP
	2 integer, 1 FP
	7 integer
	1 both
	3 integer, 1 FP
	Compare register with register/ const and branch
	=,�
	=,�
	=,�,<,²,>,³, even, odd
	—
	—
	Compare register to zero and branch
	=,�
	=,�,<,²,>,³
	=,�,<,²,>,³, even, odd
	—
	=,�,<,²,>,³
	FIGURE C.6� Summary of five approaches to conditional branches. Floating-point branch on PA-RISC ...

	C.4
	Instructions: Common Extensions to DLX
	Figure C.7 lists instructions not found in Figure C.5 in the same four categories. Instructions a...
	Name
	Definition
	MIPS IV
	PA-RISC 1.1
	PowerPC
	SPARC V9
	Data transfer
	Atomic swap R/M
	(for semaphores)
	Temp¨Rd; Rd¨ Mem[x]; Mem[x]¨Temp
	LL;SC
	— (see C.8)
	LWARX; STWCX
	CASA, CASX
	Load 64-bit integer
	Rd¨64 Mem[x]
	LD
	(in 2.0)
	LD
	LDX
	Store 64-bit int.
	Mem[x]¨64 Rd
	SD
	(in 2.0)
	STD
	STX
	Load 32-bit int.
	unsigned
	Rd32..63¨32 Mem[x]; Rd0..31 ¨32 0
	LWU
	(in 2.0)
	LWZ
	LDUW
	Load 32-bit int. signed
	Rd32..63¨32 Mem[x]; Rd0..31 ¨32 Mem[x]032
	LW
	(in 2.0)
	LWA
	LDSW
	Prefetch
	Cache[x]¨hint
	PREF, PREFX
	LDWX, LDWS, STWX,STWS
	DCBT, DCBTST
	PREFETCH
	Load coprocessor
	Coprocessor¨Mem[x]
	LWCi
	CLDWX,CLDWS
	—
	—
	Store coprocessor
	Mem[x]¨Coprocessor
	SWCi
	CSTWX,CSTWS
	—
	—
	Endian
	(Big/Little Endian?)
	Either
	Either
	Either
	Either
	Cache flush
	(Flush cache block at this address)
	CP0op
	FDC, FIC
	DCBF
	FLUSH
	Shared memory synchronization
	(All prior data transfers complete before next data transfers may start)
	SYNC
	SYNC
	SYNC
	MEMBAR
	Arithmetic, logical
	64-bit integer arithmetic ops
	Rd¨64Rs1 op64 Rs2
	DADD,DSUB DMULT, DDIV
	(in 2.0)
	ADD,SUBF, MULLD, DIVD
	ADD, SUB, MULX, S/UDIVX
	64-bit integer logical ops
	Rd¨64Rs1 op64 Rs2
	AND,OR,XOR
	(in 2.0)
	AND,OR,XOR
	AND,OR,XOR
	64-bit shifts
	Rd¨64Rs1 op64 Rs2
	DSLL,DSRA, DSRL
	(in 2.0)
	SLD,SRAD, SRLD
	SLLX, SRAX, SRLX
	Conditional move
	if (cond) Rd¨ Rs
	MOVN/Z
	SUBc,n;
	ADD
	—
	MOVcc, MOVr
	Support for multi�- word integer add
	CarryOut,Rd ¨ Rs1 + Rs2 + OldCarryOut
	ADU;SLTU; ADDU
	ADDC
	ADDC, ADDE.
	ADDcc
	Support for multi�- word integer sub
	CarryOut,Rd ¨ Rs1 Rs2 + OldCarryOut
	SUBU;SLTU; SUBU
	SUBB
	SUBFC, SUBFE.
	SUBcc
	And not
	Rd ¨ Rs1 & ~(Rs2)
	—
	ANDCM
	ANDC
	ANDN
	Or not
	Rd ¨ Rs1 | ~(Rs2)
	—
	—
	ORC
	ORN
	Add high immediate
	Rd0..15¨Rs10..15 + (Const<<16);
	—
	ADDIL (R–I)
	ADDIS (R–I)
	—
	Coprocessor operations
	(Defined by coprocessor)
	COPi
	COPR,i
	—
	IMPDEPi
	Figure continued on next page
	Name
	Definition
	MIPS IV
	PA-RISC 1.1
	PowerPC
	SPARC V9
	Control
	Optimized delayed branches
	(Branch not always �delayed )
	BEQL,BNEL, B_ZL (<,>,²,³)
	COMBT,n, COMBF,n
	—
	BPcc,A FPBcc,A
	Conditional trap
	if (COND)
	{R31¨PC; PC ¨0..0#i}
	T_,T_I (=,�,<,>,²,³)
	SUBc,n; BREAK
	TW, TD, TWI, TDI
	Tcc
	No. control regs.
	Misc. regs (virtual memory, interrupts,...)
	Å12
	32
	33
	29
	Floating point
	Multiply & Add
	Fd ¨ ( Fs1 ¥ Fs2) + Fs3
	MADD.S/D
	— (see C.8)
	FMADD/S
	Multiply & Sub
	Fd ¨ ( Fs1 ¥ Fs2) – Fs3
	MSUB.S/D
	— (see C.8)
	FMSUB/S
	Neg Mult & Add
	Fd ¨ –(( Fs1 ¥ Fs2)+Fs3)
	NMADD.S/D
	FNMADD/S
	Neg Mult & Sub
	Fd ¨–(( Fs1 ¥ Fs2)–Fs3)
	NMSUB.S/D
	FNMSUB/S
	Square Root
	Fd ¨ SQRT(Fs)
	SQRT.S/D
	FSQRTsgl/ dbl
	FSQRT/S
	FSQRTS/D
	Conditional Move
	if (cond) Fd¨Fs
	MOVF/T,
	MOVF/T.S/D,
	FTEST;FCPY
	—
	FMOVcc
	Negate
	Fd ¨ Fs ^ x80000000
	NEG.S/D
	(in 2.0)
	FNEG
	FNEGS/D/Q
	Absolute value
	Fd ¨ Fs & x7FFFFFFF
	ABS.S/D
	FABS/dbl
	FABS
	FABSS/D/Q
	FIGURE C.7� Instructions not found in DLX but found in two or more of the four architectures.

	Although most of the categories are self-explanatory, a few bear comment:
	The “atomic swap” row means a primitive that can exchange a register with memory without interrup...
	The 64-bit data transfer and operation rows show how MIPS, PowerPC, and SPARC define 64-bit addre...
	The “prefetch” instruction supplies an address and hint to the implementation about the data. Hin...
	In the “Endian” row, “Big or Little” means there is a bit in the program status register that all...
	The “shared memory synchronization” helps with cache-coherent multi�processors: All loads and sto...
	The “coprocessor operations” row lists several categories that allow for the processor to be exte...
	One difference that needs a longer explanation is the optimized branches. �Figure C.8 shows the o...
	Now that we have covered the similarities, we will focus on the unique features of each architect...
	(Plain) Branch
	Delayed branch
	Annulling delayed branch
	Found in architectures
	PowerPC
	DLX, MIPS, PA-RISC, SPARC
	MIPS, SPARC
	PA-RISC
	Execute following �instruction
	Only if branch not taken
	Always
	Only if branch taken
	If forward branch not taken or backward branch taken
	FIGURE C.8� When the instruction following the branch is executed for three types of branches.

	C.5
	Instructions Unique to MIPS
	MIPS has gone through four generations of instruction set evolution, and this evolution has gener...
	Nonaligned Data Transfers

	MIPS has special instructions to handle misaligned words in memory. A rare event in most programs...
	FIGURE C.9� MIPS instructions for unaligned word reads. This figure assumes operation in Big Endi...
	TLB Instructions

	TLB misses are handled in software in MIPS, so the instruction set also has instructions for mani...
	Remaining Instructions

	Below is a list of the remaining unique details of the MIPS architecture:
	NOR—This logical instruction calculates ~(Rs1 | Rs2).
	Constant shift amount—Non-variable shifts use the 5-bit constant field shown in the register-regi...
	SYSCALL—This special trap instruction is used to invoke the operating �system.
	Move to/from control registers—CTCi and CFCi move between the integer registers and control regis...
	Jump/call not PC-relative—The 26-bit address of jumps and calls is not added to the PC. It is shi...
	Load linked/store conditional—This pair of instructions gives MIPS atomic operations for semaphor...
	Reciprocal and reciprocal square root—These instructions, which do not follow IEEE 754 guidelines...
	Conditional procedure call instructions—BGEZAL saves the return address and branches if the conte...
	There is no specific provision in the MIPS architecture for floating-point execu�tion to proceed ...
	C.6
	Instructions Unique to SPARC
	Several features are unique to SPARC.
	Register Windows

	The primary unique feature of SPARC is register windows, an optimization for reducing register tr...
	SPARC can have between two and 32 windows, typically using eight registers each for the globals, ...
	The danger of register windows is that the larger number of registers could slow down the clock r...
	Another data transfer feature is alternate space option for loads and stores. This simply allows ...
	Fast Traps

	Version 9 SPARC includes support to make traps fast. It expands the single level of traps to at l...
	Support for Lisp and Smalltalk

	The primary remaining arithmetic feature is tagged addition and subtraction. The designers of SPA...
	FIGURE C.10� SPARC uses the two least-significant bits to encode different data types for the tag...
	Overlapped Integer and Floating-Point Operations

	SPARC allows floating-point instructions to overlap execution with integer instructions. To recov...
	Remaining Instructions

	The remaining unique features of SPARC are
	JMPL uses Rd to specify the return address register, so specifying r31 makes it similar to JALR i...
	LDSTUB loads the value of the byte into Rd and then stores FF16 into the addressed byte. This ver...
	CASA (CASXA) atomically compares a value in a processor register to 32-bit (64-bit) value in memo...
	XNOR calculates the exclusive or with the complement of the second operand.
	BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler can give hints to the m...
	ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how this is used for proper ...
	POPC counts the number of bits set to one in an operand.
	Non-faulting loads allow compilers to move load instructions ahead of conditional control structu...
	Quadruple precision floating-point arithmetic and data transfer allow the floating-point register...
	Multiple-precision floating-point results for multiply mean that two single- �precision operands ...
	C.7
	Instructions Unique to PowerPC
	PowerPC is the result of several generations of IBM commercial RISC machines: IBM RT/PC, IBM Powe...
	Branch Registers: Link and Counter

	Rather than dedicate one of the 32 general-purpose registers to save the return address on proced...
	In a similar vein, PowerPC has a count register to be used in for loops where the program iterate...
	Given that the count register and link register are already located with the hardware that contro...
	Remaining Instructions

	Unlike other RISC machines, register 0 is not hardwired to the value 0. It cannot be used as a ba...
	Load multiple and store multiple save or restore up to 32 registers in a single instruction.
	LSW and STSW permit fetching and storing of fixed and variable-length strings that have arbitrary...
	Rotate with mask instructions support bit field extraction and insertion. One version rotates the...
	Algebraic right shift sets the carry bit (CA) if the operand is negative and any one bits are shi...
	CBTLZ will count leading zeros.
	SUBFIC computes (immediate – RA), which can be used to develop a one’s or two’s complement.
	Logical shifted immediate instructions shift the 16-bit immediate to the left 16 bits before perf...
	C.8
	Instructions Unique to PA-RISC
	PA-RISC was expanded slightly in 1990 with version 1.1 and changed significantly in 2.0 with 64-b...
	Nullification

	As shown in Figure C.8 on page C-12, several RISC machines can choose to not execute the instruct...
	A Cornucopia of Conditional Branches

	Given nullification, PA-RISC did not need to have separate conditional branch instructions. The i...
	Name
	Instruction
	Notation
	COMB
	Compare and branch
	if (cond(Rs1,Rs2))
	{PC ¨ PC + offset12}
	COMIB
	Compare imm. and branch
	if (cond(imm5,Rs2))
	{PC ¨ PC + offset12}
	MOVB
	Move and branch
	Rs2 ¨ Rs1,
	if (cond(Rs1,0))
	{PC ¨ PC + offset12}
	MOVIB
	Move immediate and branch
	Rs2 ¨ imm5,
	if (cond(imm5,0))
	{PC ¨ PC + offset12}
	ADDB
	Add and branch
	Rs2 ¨ Rs1 + Rs2,
	if (cond(Rs1 + Rs2,0))
	{PC ¨ PC + offset12}
	ADDIB
	Add imm. and branch
	Rs2 ¨ imm5 + Rs2,
	if (cond(imm5 + Rs2,0))
	{PC ¨ PC + offset12}
	BB
	Branch on bit
	if (cond(Rsp,0)
	{PC ¨ PC + offset12}
	BVB
	Branch on variable bit
	if (cond(Rssar,0)
	{PC ¨ PC + offset12}
	FIGURE C.11� The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in...
	Synthesized Multiply and Divide

	PA-RISC provides several primitives so that multiply and divide can be synthesized in software. I...
	The original SPARC architecture used similar optimizations, but with increasing number of transis...
	Decimal Operations

	COBOL programs will compute on decimal values, stored as 4 bits per digit, rather than converting...
	Remaining Instructions

	Here are some remaining PA-RISC instructions:
	Branch vectored shifts an index register left 3 bits, adds it to a base register and then branche...
	Extract and deposit instructions allow arbitrary bit fields to be selected from or inserted into ...
	To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which adds a left-adjusted 2...
	PA-RISC has nine debug instructions that can set breakpoints on instruction or data addresses and...
	Load and clear instructions provide a semaphore that reads a value from memory and then writes zero.
	Store bytes short optimizes unaligned data moves, moving either the leftmost or the rightmost byt...
	Loads and stores work well with caches by having options that give hints about whether to load da...
	Multiply/add and multiply/subtract are floating-point operations that can launch two independent ...
	In addition to instructions, here are a few features that distinguish PA-RISC:
	The segmented address space above the 232 boundary means that there must be instructions to manip...
	The data addressing modes use either a 14-bit offset or a 5-bit offset, and the sum of the base r...
	C.9
	Concluding Remarks
	This appendix covers the addressing modes, instruction formats, and all instructions found in fou...
	IBM 360/370
	Intel 8086
	Motorola 68000
	DEC VAX
	Date announced
	1964/1970
	1978
	1980
	1977
	Instruction size(s) (bits)
	16,32,48
	8,16,24,32, 40,48
	16,32,48,64,80
	8,16,24,32,..., 432
	Addressing (size, model)
	24 bits, flat/ 31 bits, flat
	4+16 bits, �segmented
	24 bits, flat
	32 bits, flat
	Data aligned?
	Yes 360/ No 370
	No
	16-bit aligned
	No
	Data addressing modes
	2/3
	5
	9
	³ 14
	Protection
	Page
	None
	Optional
	Page
	Page size
	2 KB & 4 KB
	—
	0.25 to 32 KB
	0.5 KB
	I/O
	Opcode
	Opcode
	Memory mapped
	Memory mapped
	Integer registers (size, model, number)
	16 GPR ¥ 32 bits
	8 dedicated data ¥ 16 bits
	8 data & 8 address ¥ 32 bits
	15 GPR ¥ 32 bits
	Separate floating-point registers
	4 ¥ 64 bits
	Optional: 8 ¥ 80 bits
	Optional: 8 ¥ 80 bits
	0
	Floating-point format
	IBM (floating hexadecimal)
	IEEE 754 single, double, extended
	IEEE 754 single, double, extended
	DEC
	FIGURE C.12� Summary of four 1970s architectures. Unlike the architectures in Figure C.1 on page ...

	This style of architectures cannot remain static, however. Like people, instruction sets tend to ...
	FIGURE C.13� The lineage of RISC instruction sets. Commercial machines are shown in plain text an...

	PA-RISC
	MIPS
	Power
	Feature
	1.0
	1.1
	2.0
	v. 9
	I
	II
	IV
	1
	2
	PC
	Interlocked loads
	Ã
	"
	"
	Ã
	"
	+
	"
	"
	Ã
	"
	"
	Load/store FP double
	Ã
	"
	"
	Ã
	"
	+
	"
	"
	Ã
	"
	"
	Semaphore
	Ã
	"
	"
	Ã
	"
	+
	"
	"
	Ã
	"
	"
	Square root
	Ã
	"
	"
	Ã
	"
	+
	"
	"
	+
	"
	Single-precision FP ops
	Ã
	"
	"
	Ã
	"
	Ã
	"
	"
	"
	+
	Memory synchronization
	Ã
	"
	"
	Ã
	"
	+
	"
	"
	Ã
	"
	"
	Coprocessor
	Ã
	"
	"
	Ã
	–
	Ã
	"
	"
	"
	Base + index addressing
	Ã
	"
	"
	Ã
	"
	+
	Ã
	"
	"
	Å 32 64-bit FP registers
	"
	"
	+
	+
	"
	Ã
	"
	"
	Annulling delayed branch
	Ã
	"
	"
	Ã
	"
	+
	"
	"
	Branch register contents
	Ã
	"
	"
	+
	Ã
	"
	"
	"
	Big or Little Endian
	+
	"
	+
	Ã
	"
	"
	"
	+
	Branch prediction bit
	+
	+
	"
	"
	Ã
	"
	"
	Conditional move
	+
	+
	Ã
	"
	–
	Prefetch data into cache
	+
	+
	+
	Ã
	"
	"
	64-bit addressing/ int. ops
	+
	+
	+
	"
	+
	32-bit multiply, divide
	+
	"
	+
	Ã
	"
	"
	"
	Ã
	"
	"
	Load/store FP quad
	+
	+
	–
	Fused FP mul/add
	+
	+
	Ã
	"
	"
	String instructions
	Ã
	"
	"
	Ã
	"
	–
	FIGURE C.14� Features added to RISC machines. Ã means in the original machine, + means added late...
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