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I’m certainly not inventing vector processors. There are three 

kinds that I know of existing today. They are represented by th

Illiac-IV, the (CDC) Star processor, and the TI (ASC) processo

Those three were all pioneering processors.... One of the probl

of being a pioneer is you always make mistakes and I never, n

want to be a pioneer. It’s always best to come second when you

look at the mistakes the pioneers made.

Seymour Cray
Public Lecture at Lawrence Livermore Laboratories
on the Introduction of the CRAY-1 (1976)
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In Chapters 3 and 4 we looked at pipelining and exploitation of instruction-l
parallelism in detail and saw that pipeline scheduling, issuing multiple inst
tions per clock cycle, and more deeply pipelining a processor could significa
improve the performance of a processor. (This appendix assumes that you
read Chapter 3 completely and at least skimmed Chapter 4; in addition, the
cussion on vector memory systems assumes that you have read Chapter 
there are limits on the performance improvement that pipelining can ach
These limits are set by two primary factors:

■ Clock cycle time—The clock cycle time can be decreased by making the p
lines deeper, but a deeper pipeline will increase the pipeline dependence
result in a higher CPI. At some point, each increase in pipeline depth has a
responding increase in CPI. As we saw in Chapter 3’s Fallacies and Pitfalls,
very deep pipelining can slow down a processor.

■ Instruction fetch and decode rate—This obstacle, sometimes called the Flynn
bottleneck (based on Flynn [1966]), makes it difficult to fetch and issue ma
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instructions per clock. This obstacle is one reason that it has been difficu
build processors with high clock rates and very high issue rates. 

The dual limitations imposed by deeper pipelines and issuing multiple inst
tions can be viewed from the standpoint of either clock rate or CPI: It is jus
difficult to schedule a pipeline that is n times deeper as it is to schedule a proce
sor that issues n instructions per clock cycle.

High-speed, pipelined processors are particularly useful for large scien
and engineering applications. A high-speed pipelined processor will usually u
cache to avoid forcing memory reference instructions to have very long late
Unfortunately, big, long-running, scientific programs often have very large ac
data sets that are sometimes accessed with low locality, yielding poor pe
mance from the memory hierarchy. This problem could be overcome by not c
ing these structures if it were possible to determine the memory-access pa
and pipeline the memory accesses efficiently. Novel cache architectures and
piler assistance through blocking and prefetching are decreasing these me
hierarchy problems, but they continue to be serious in some applications.

Vector processors provide high-level operations that work on vectors—linear
arrays of numbers. A typical vector operation might add two 64-element, floa
point vectors to obtain a single 64-element vector result. The vector instructi
equivalent to an entire loop, with each iteration computing one of the 64 elem
of the result, updating the indices, and branching back to the beginning.

Vector instructions have several important properties that solve most o
problems mentioned above:

■ The computation of each result is independent of the computation of prev
results, allowing a very deep pipeline without generating any data hazards. E
sentially, the absence of data hazards was determined by the compiler or 
programmer when she decided that a vector instruction could be used.

■ A single vector instruction specifies a great deal of work—it is equivalent to
ecuting an entire loop. Thus, the instruction bandwidth requirement is redu
and the Flynn bottleneck is considerably mitigated.

■ Vector instructions that access memory have a known access pattern. If th
tor’s elements are all adjacent, then fetching the vector from a set of heavi
terleaved memory banks works very well (as we saw in section 5.6). The 
latency of initiating a main memory access versus accessing a cache is 
tized, because a single access is initiated for the entire vector rather tha
single word. Thus, the cost of the latency to main memory is seen only onc
the entire vector, rather than once for each word of the vector. 

■ Because an entire loop is replaced by a vector instruction whose behav
predetermined, control hazards that would normally arise from the loop bra
are nonexistent.
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For these reasons, vector operations can be made faster than a sequence o
operations on the same number of data items, and designers are motivated
clude vector units if the applications domain can use them frequently.

As mentioned above, vector processors pipeline the operations on the ind
ual elements of a vector. The pipeline includes not only the arithmetic opera
(multiplication, addition, and so on), but also memory accesses and effectiv
dress calculations. In addition, most high-end vector processors allow mu
vector operations to be done at the same time, creating parallelism among th
erations on different elements. In this appendix, we focus on vector proce
that gain performance by pipelining and instruction overlap.

A vector processor typically consists of an ordinary pipelined scalar unit pl
vector unit. All functional units within the vector unit have a latency of seve
clock cycles. This allows a shorter clock cycle time and is compatible with lo
running vector operations that can be deeply pipelined without generating 
ards. Most vector processors allow the vectors to be dealt with as floating-
numbers, as integers, or as logical data. Here we will focus on floating point
scalar unit is basically no different from the type of advanced pipelined CPU
cussed in Chapter 3. 

There are two primary types of architectures for vector processors: vector-
register processors and memory-memory vector processors. In a vector-register
processor, all vector operations—except load and store—are among the v
registers. These architectures are the vector counterpart of a load-store arc
ture. All major vector computers shipped since the late 1980s use a vector-re
architecture; these include the Cray Research processors (CRAY-1, CRAY-
MP, Y-MP, and C-90), the Japanese supercomputers (NEC SX/2 and SX/3, F
VP200 and VP400, and the Hitachi S820), as well as the mini-supercomp
(Convex C-1 and C-2). In a memory-memory vector processor, all vector op
tions are memory to memory. The first vector computers were of this type, as
CDC’s vector computers. From this point on we will focus on vector-register
chitectures only; we will briefly return to memory-memory vector architecture
the end of the appendix (section B.7) to discuss why they have not been a
cessful as vector-register architectures. 

We begin with a vector-register processor consisting of the primary c
ponents shown in Figure B.1. This processor, which is loosely based on
CRAY-1, is the foundation for discussion throughout most of this appendix.
will call it DLXV; its integer portion is DLX, and its vector portion is the logica
vector extension of DLX. The rest of this section examines how the basic a
tecture of DLXV relates to other processors. 

B.2 Basic Vector Architecture
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The primary components of the instruction set architecture of DLXV are

■ Vector registers—Each vector register is a fixed-length bank holding a sin
vector. DLXV has eight vector registers, and each vector register holds 6
ements. Each vector register must have at least two read ports and one
port in DLXV. This will allow a high degree of overlap among vector ope
tions to different vector registers. (We do not consider the problem of a s
age of vector register ports. In real machines this would result in a struc
hazard.) The read and write ports, which total at least 16 read ports and
write ports, are connected to the functional unit inputs or outputs by a pa
crossbars. (The CRAY-1 manages to implement the register file with on
single port per register using some clever implementation techniques.)

FIGURE B.1 The basic structure of a vector-register architecture, DLXV. This proces-
sor has a scalar architecture just like DLX. There are also eight 64-element vector registers,
and all the functional units are vector functional units. Special vector instructions are defined
both for arithmetic and for memory accesses. We show vector units for logical and integer
operations. These are included so that DLXV looks like a standard vector processor, which
usually includes these units. However, we will not be discussing these units except in the
Exercises. The vector and scalar registers have a significant number of read and write ports
to allow multiple simultaneous vector operations. These ports are connected to the inputs and
outputs of the vector functional units by a set of crossbars (shown in thick gray lines). In
section B.5 we add chaining, which will require additional interconnect capability.

Main memory

Vector
registers

Scalar
registers

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector
load-store
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■ Vector functional units—Each unit is fully pipelined and can start a new ope
ation on every clock cycle. A control unit is needed to detect hazards, both 
conflicts for the functional units (structural hazards) and from conflicts for r
ister accesses (data hazards). DLXV has five functional units, as show
Figure B.1. For simplicity, we will focus exclusively on the floating-point fun
tional units. Depending on the vector processor, scalar operations either u
vector functional units or use a dedicated set. We assume the functional
are shared, but again, for simplicity, we ignore potential conflicts. 

■ Vector load-store unit—This is a vector memory unit that loads or stores a v
tor to or from memory. The DLXV vector loads and stores are fully pipelin
so that words can be moved between the vector registers and memory w
bandwidth of one word per clock cycle, after an initial latency. This unit wo
also normally handle scalar loads and stores. 

■ A set of scalar registers—Scalar registers can also provide data as input to 
vector functional units, as well as compute addresses to pass to the vecto
store unit. These are the normal 32 general-purpose registers and 32 flo
point registers of DLX, though more read and write ports are needed. The
lar registers are also connected to the functional units by the pair of cross

Figure B.2 shows the characteristics of some typical vector processors, in
ing the size and count of the registers, the number and types of functional 
and the number of load-store units.

In DLXV, vector operations use the same names as DLX operations, but 
the letter “V” appended. These are double-precision, floating-point vector op
tions. (We have omitted single-precision FP operations and integer and lo
operations for simplicity.) Thus, ADDV is an add of two double-precision vector
The vector instructions take as their input either a pair of vector registers (ADDV)
or a vector register and a scalar register, designated by appending “SV” (ADDSV).
In the latter case, the value in the scalar register is used as the input for all o
tions—the operation ADDSV will add the contents of a scalar register to each e
ment in a vector register. Most vector operations have a vector destin
register, though a few (population count) produce a scalar value, which is s
to a scalar register. The names LV and SV denote vector load and vector store, an
they load or store an entire vector of double-precision data. One opera
the vector register to be loaded or stored; the other operand, which is a 
general-purpose register, is the starting address of the vector in mem
Figure B.3 lists the DLXV vector instructions. In addition to the vector registe
we need two additional special-purpose registers: the vector-length and ve
mask registers. We will discuss these registers and their purpose in section
and B.5, respectively.
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Processor 
Year

announced

Clock
rate

(MHz) Registers

Elements per
register (64-bit

elements) Functional units
Load-store 

units

CRAY-1 1976 80 8 64 6: add, multiply, reciprocal, 
integer add, logical, shift

1

CRAY X-MP 
CRAY Y-MP

1983
1988

120
166

8 64 8: FP add, FP multiply, FP re-
ciprocal, integer add, 2 logical, 
shift, population count/parity

2 loads
1 store

CRAY-2 1985 166 8 64 5: FP add, FP multiply, FP re-
ciprocal/sqrt, integer (add shift, 
population count), logical

1

Fujitsu 
VP100/200

1982 133 8–256 32–1024 3: FP or integer add/logical, 
multiply, divide

2

Hitachi 
S810/820

1983 71 32 256 4: 2 integer add/logical, 
1 multiply-add, and 1 multiply/
divide–add unit

4

Convex C-1 1985 10 8 128 4: multiply, add, divide, integer/
logical

1

NEC SX/2 1984 160 8 + 8192 256 variable 16: 4 integer add/logical, 4 FP 
multiply/divide, 4 FP add, 
4 shift

8

DLXV 1990 200 8 64 5: multiply, divide, add, 
integer add, logical

1

Cray C-90 1991 240 8 128 8: FP add, FP multiply, FP re-
ciprocal, integer add, 2 logical, 
shift, population count/parity

4

Convex C-4 1994 135 16 128 3: each is full integer, logical, 
and FP (including multiply-add)

NEC SX/4 1995 400 8 + 8192 256 variable 16: 4 integer add/logical, 4 FP 
multiply/divide, 4 FP add, 
4 shift

8

Cray J-90 1995 100 8 64 4: FP add, FP multiply, FP re-
ciprocal, integer/logical

Cray T-90 1996 ~500 8 128 8: FP add, FP multiply, FP re-
ciprocal, integer add, 2 logical, 
shift, population count/parity

4

FIGURE B.2 Characteristics of several vector-register architectures. The vector functional units include all operation
units used by the vector instructions. The functional units are floating point unless stated otherwise. If the processor is a
multiprocessor, the entries correspond to the characteristics of one processor. Each vector load-store unit represents the
ability to do an independent, overlapped transfer to or from the vector registers. The Fujitsu VP200’s vector registers are
configurable: The size and count of the 8 K 64-bit entries may be varied inversely to one another (e.g., eight registers each
1 K elements long, or 128 registers each 64 elements long). The NEC SX/2 has eight fixed registers of length 256, plus 8 K
of configurable 64-bit registers. The reciprocal unit on the CRAY processors is used to do division (and square root on the
CRAY-2). Add pipelines perform floating-point add and subtract. The multiply/divide–add unit on the Hitachi S810/820 per-
forms an FP multiply or divide followed by an add or subtract (while the multiply-add unit performs a multiply followed by an
add or subtract). Note that most processors use the vector FP multiply and divide units for vector integer multiply and divide,
just like DLX, and several of the processors use the same units for FP scalar and FP vector operations. Several of the
machines have different clock rates in the vector and scalar units; the clock rates shown are for the vector units.
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A vector processor is best understood by looking at a vector loop on DL
Let’s take a typical vector problem, which will be used throughout this appen

Y = a × X + Y

X and Y are vectors, initially resident in memory, and a is a scalar. This is th
called SAXPY or DAXPY loop that forms the inner loop of the Linpack benc
mark. (SAXPY stands for single-precision a × X plus Y; DAXPY for double-
precision a × X plus Y.) Linpack is a collection of linear algebra routines, and t

Instruction Operands Function

ADDV
ADDSV

V1,V2,V3
V1,F0,V2

Add elements of V2 and V3, then put each result in V1.
Add F0 to each element of V2, then put each result in V1.

SUBV
SUBVS
SUBSV

V1,V2,V3
V1,V2,F0
V1,F0,V2

Subtract elements of V3 from V2, then put each result in V1.
Subtract F0 from elements of V2, then put each result in V1.
Subtract elements of V2 from F0, then put each result in V1.

MULTV
MULTSV

V1,V2,V3
V1,F0,V2

Multiply elements of V2 and V3, then put each result in V1.
Multiply F0 by each element of V2, then put each result in V1.

DIVV
DIVVS
DIVSV

V1,V2,V3
V1,V2,F0
V1,F0,V2

Divide elements of V2 by V3, then put each result in V1.
Divide elements of V2 by F0, then put each result in V1.
Divide F0 by elements of V2, then put each result in V1.

LV V1,R1 Load vector register V1 from memory starting at address R1.

SV R1,V1 Store vector register V1 into memory starting at address R1.

LVWS V1,(R1,R2) Load V1 from address at R1 with stride in R2, i.e., R1+i  × R2.

SVWS (R1,R2),V1 Store V1 from address at R1 with stride in R2, i.e., R1+i  × R2.

LVI V1,(R1+V2) Load V1 with vector whose elements are at R1+V2(i) , i.e., V2 is an index.

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1+V2(i) , i.e., V2 is an index.

CVI V1,R1 Create an index vector by storing the values 0,  1 × R1,  2 × R1,...,63  × R1 
into V1.

S--V
S--SV

V1,V2
F0,V1

Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, 
put a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector 
vector-mask register (VM). The instruction S--SV  performs the same compare but 
using a scalar value as one operand.

POP R1,VM Count the 1s in the vector-mask register and store count in R1.

CVM Set the vector-mask register to all 1s.

MOVI2S
MOVS2I

VLR,R1
R1,VLR

Move contents of R1 to the vector-length register.
Move the contents of the vector-length register to R1.

MOVF2S
MOVS2F

VM,F0
F0,VM

Move contents of F0 to the vector-mask register.
Move contents of vector-mask register to F0.

FIGURE B.3 The DLXV vector instructions.  Only the double-precision FP operations are shown. In addition to the vector
registers, there are two special registers, VLR (discussed in section B.3) and VM (discussed in section B.5). The operations
with stride are explained in section B.3, and the use of the index creation and indexed load-store operations are explained
in section B.5.
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routines for performing Gaussian elimination constitute what is known as
Linpack benchmark. The DAXPY routine, which implements the above lo
represents a small fraction of the source code of the Linpack benchmark, 
accounts for most of the execution time for the benchmark.

For now, let us assume that the number of elements, or length, of a vecto
ister (64) matches the length of the vector operation we are interested in. (Th
striction will be lifted shortly.)

E X A M P L E Show the code for DLX and DLXV for the DAXPY loop. Assume that the 
starting addresses of X and Y are in Rx and Ry, respectively.

A N S W E R Here is the DLX code. 

 LD F0,a

 ADDI R4,Rx,#512 ;last address to load 

Loop:  LD F2,0(Rx)   ;load X(i)

 MULTD F2,F0,F2 ;a × X(i)

 LD F4,0(Ry) ;load Y(i)

 ADDD F4,F2,F4 ;a  × X(i) + Y(i)

 SD 0(Ry),F4 ;store into Y(i)

 ADDI Rx,Rx,#8 ;increment index to X

 ADDI Ry,Ry,#8 ;increment index to Y

 SUB R20,R4,Rx ;compute bound

 BNEZ R20,Loop ;check if done

Here is the code for DLXV for DAXPY. 

LD F0,a ;load scalar a

LV V1,Rx ;load vector X

MULTSV V2,F0,V1 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

There are some interesting comparisons between the two code segments 
in this Example. The most dramatic is that the vector processor greatly re-
duces the dynamic instruction bandwidth, executing only six instructions 
versus almost 600 for DLX. This reduction occurs both because the vector 
operations work on 64 elements and because the overhead instructions 
that constitute nearly half the loop on DLX are not present in the DLXV 
code. ■ 
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Another important difference is the frequency of pipeline interlocks. In 
straightforward DLX code every ADDD must wait for a MULTD, and every SD must
wait for the ADDD. On the vector processor, each vector instruction operates o
the vector elements independently. Thus, pipeline stalls are required only 
per vector operation, rather than once per vector element. In this example
pipeline-stall frequency on DLX will be about 64 times higher than it is 
DLXV. The pipeline stalls can be eliminated on DLX by using software pipe
ing or loop unrolling (as we saw in Chapter 4). However, the large differenc
instruction bandwidth cannot be reduced.

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on
factors: the length of the vectors being operated on, structural hazards amo
operations, and the data dependences. Given the vector length and the initiation
rate, which is the rate at which a vector unit consumes new operands and
duces new results, we can compute the time for a single vector instruction
initiation rate is usually one per clock cycle for individual operations. Howev
some supercomputers have vector instructions that can produce two or mo
sults per clock, and others have units that may not be fully pipelined. For sim
ity, we assume that initiation rates are one throughout this appendix. Thus
execution time for a single vector instruction is approximately the vector leng

To simplify the discussion of vector execution and its timing, we will use 
notion of a convoy, which is the set of vector instructions that could potentia
begin execution together in one clock period. (Although the concept of a co
is used in vector compilers, no standard terminology exists. Hence, we cr
the term convoy.) The instructions in a convoy must not contain any structural or
data hazards (though we will relax this later); if such hazards were presen
instructions in the potential convoy would need to be serialized and initiate
different convoys. To keep the analysis simple, we assume that a convoy 
structions must complete execution before any other instructions (scalar or
tor) can begin execution. We will relax this in section B.6 by using a l
restrictive, but more complex, method for issuing instructions. 

Accompanying the notion of a convoy is a timing metric, called a chime, that
can be used for estimating the performance of a vector sequence consist
convoys. A chime is an approximate measure of execution time for a vecto
quence; a chime measurement is independent of vector length. Thus, a vec
quence that consists of m convoys executes in m chimes, and for a vector length
of n, this is approximately m × n clock cycles. A chime approximation ignore
some processor-specific overheads, many of which are dependent on v
length. Hence, measuring time in chimes is a better approximation for long
tors. We will use the chime measurement, rather than clock cycles per resu
explicitly indicate that certain overheads are being ignored. 
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If we know the number of convoys in a vector sequence, we know the ex
tion time in chimes. One source of overhead ignored in measuring chimes i
limitation on initiating multiple vector instructions in a clock cycle. If only on
vector instruction can be initiated in a clock cycle (the reality in most vec
processors), the chime count will underestimate the actual execution time
convoy. Because the vector length is typically much greater than the numb
instructions in the convoy, we will simply assume that the convoy executes in
chime. 

E X A M P L E Show how the following code sequence lays out in convoys, assuming a 
single copy of each vector functional unit:

LV V1,Rx ;load vector X

MULTSV V2,F0,V1 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

How many chimes will this vector sequence take? How many chimes per 
FLOP (floating-point operation) are needed?

A N S W E R The first convoy is occupied by the first LV instruction. The MULTSV is de-
pendent on the first LV, so it cannot be in the same convoy. The second 
LV instruction can be in the same convoy as the MULTSV. The ADDV is de-
pendent on the second LV, so it must come in yet a third convoy, and finally 
the SV depends on the ADDV, so it must go in a following convoy. This leads 
to the following layout of vector instructions into convoys:

1. LV

2. MULTSV LV

3. ADDV

4. SV

The sequence requires four convoys and hence takes four chimes. Note 
that although we allow the MULTSV and the LV both to execute in convoy 
2, most vector machines will take two clock cycles to initiate the instruc-
tions. Since the sequence takes a total of four chimes and there are two 
floating-point operations per result, the number of chimes per FLOP is 
two. ■

The chime approximation is reasonably accurate for long vectors. For ex
ple, for 64-element vectors, the time in chimes is four, so the sequence w
take about 256 clock cycles. The overhead of issuing convoy 2 in two sep
clocks would be small.
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Another source of overhead is far more significant than the issue limita
The most important source of overhead ignored by the chime model is v
start-up time. The start-up time comes from the pipelining latency of the vec
operation and is principally determined by how deep the pipeline is for the f
tional unit used. The start-up time increases the effective time to execute a
voy to more than one chime. Because of our assumption that convoys d
overlap in time, the start-up time delays the execution of subsequent convoy
course the instructions in successive convoys have either structural conflic
some functional unit or are data dependent, so the assumption of no over
reasonable. The actual time to complete a convoy is determined by the su
the vector length and the start-up time. If vector lengths were infinite, this s
up overhead would be amortized, but finite vector lengths expose it, as the
lowing Example shows.

E X A M P L E Assume the start-up overhead for functional units is shown in Figure B.4.

Show the time that each convoy can begin and the total number of cycles 
needed. How does the time compare to the chime approximation for a 
vector of length 64?

A N S W E R Figure B.5 provides the answer in convoys, assuming that the vector 
length is n:

One tricky question is when we assume the vector sequence is done; this 
determines whether the start-up time of the SV is visible or not. We as-
sume that the instructions following cannot fit in the same convoy, and we 

Unit Start-up overhead

Load and store unit 12 cycles

Multiply unit 7 cycles

Add unit 6 cycles

FIGURE B.4 Start-up overhead.

Convoy Starting time First-result time Last-result time

1. LV 0 12 11 + n

2. MULTSV LV 12 + n 12 + n + 12 23 + 2n

3. ADDV 24 + 2n 24 + 2n + 6 29 + 3n

4. SV 30 + 3n 30 + 3n + 12 41 + 4n

FIGURE B.5 Starting times and first- and last-result times for convoys 
1 through 4.  The vector length is n.
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have already assumed that convoys do not overlap. Thus the total time is 
given by the time until the last vector instruction in the last convoy com-
pletes. This is an approximation, and the start-up time of the last vector 
instruction may be seen in some sequences and not in others. For sim-
plicity, we always include it. 

The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock 
cycles, while the chime approximation would be 4. The execution time 
with start-up overhead is 1.16 times higher. ■

For simplicity, we will use the chime approximation for running time, inco
porating start-up time effects only when we want more detailed performanc
to illustrate the benefits of some enhancement. For long vectors, a typical 
tion, the overhead effect is not that large. Later in the appendix we will exp
ways to reduce start-up overhead. 

Start-up time for an instruction comes from the pipeline depth for the fu
tional unit implementing that instruction. If the initiation rate is to be kept at o
clock cycle per result, then

For example, if an operation takes 10 clock cycles, it must be pipelined 10 
to achieve an initiation rate of one per clock cycle. Pipeline depth, then, is d
mined by the complexity of the operation and the clock cycle time of the pro
sor. The pipeline depths of functional units vary widely—from two to 20 stage
not uncommon—though the most heavily used units have pipeline depths of
to eight clock cycles.

For DLXV, we will use the same pipeline depths as the CRAY-1, though m
modern processors might have units with lower latency. All functional units
fully pipelined. As shown in Figure B.6, pipeline depths are six clock cycles
floating-point add and seven clock cycles for floating-point multiply. On DLX
as on most vector processors, independent vector operations using different
tional units can issue in the same convoy.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

FIGURE B.6 Start-up penalties on DLXV.  These are the start-up penalties in clock cycles
for DLXV vector operations. 

Pipeline depth Total functional unit time
Clock cycle time

-------------------------------------------------------------=
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Vector Load-Store Units and Vector Memory Systems

The behavior of the load-store vector unit is significantly more complicated 
that of the arithmetic functional units. The start-up time for a load is the tim
get the first word from memory into a register. If the rest of the vector can be
plied without stalling, then the vector initiation rate is equal to the rate at wh
new words are fetched or stored. Unlike simpler functional units, the initia
rate may not necessarily be one clock cycle.

Typically, penalties for start-ups on load-store units are higher than thos
arithmetic functional units—up to 50 clock cycles on some processors. 
DLXV we will assume a start-up time of 12 clock cycles; by comparison, 
CRAY-1 and CRAY X-MP have load-store start-up times of between nine an
clock cycles. Figure B.6 summarizes the start-up penalties for DLXV vector
erations.

To maintain an initiation rate of one word fetched or stored per clock, 
memory system must be capable of producing or accepting this much data
is usually done by creating multiple memory banks, as discussed in section
As we will see in the next section, having significant numbers of banks is us
for dealing with vector loads or stores that access rows or columns of data. 

Most vector processors use memory banks rather than simple interleavin
two primary reasons:

1. Many vector computers support multiple loads or stores per clock. To sup
multiple simultaneous accesses, the memory system needs to have m
banks and be able to control the addresses to the banks independently.

2. As we will see in the next section, many vector processors support the a
to load or store data words that are not sequential. In such cases, indepe
bank addressing, rather than interleaving, is required. 

In Chapter 5 we saw that the desired access rate and the bank access time
mined how many banks were needed to access a memory without a stal
next Example shows how these timings work out in a vector processor.

E X A M P L E Suppose we want to fetch a vector of 64 elements starting at byte address 
136, and a memory access takes six clocks. How many memory banks 
must we have? With what addresses are the banks accessed? When will 
the various elements arrive at the CPU?

A N S W E R Six clocks per access require at least six banks, but because we want the 
number of banks to be a power of two, we choose to have eight banks. 
Figure B.7 shows what byte addresses each bank accesses within each 
time period. Remember that a bank begins a new access as soon as it 
has completed the old access. 
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Figure B.8 shows the timing for the first few sets of accesses for an 
eight-bank system with a six-clock-cycle access latency. There are two 
important observations about Figures B.7 and B.8: First, notice that the 
exact address fetched by a bank is largely determined by the lower-order 
bits in the bank number; however, the initial access to a bank is always 
within eight double words of the starting address. Second, notice that 
once the initial latency is overcome (six clocks in this case), the pattern 
is to access a bank every n clock cycles, where n is the total number of 
banks (n = 8 in this case).

■

Beginning Bank
at clock no. 0 1 2 3 4 5 6 7

0 192 136 144 152 160 168 176 184

6 256 200 208 216 224 232 240 248

14 320 264 272 280 288 296 304 312

22 384 328 336 344 352 360 368 376

FIGURE B.7 Memory addresses (in bytes) by bank number and time slot at
which access begins. The exact time when a bank transmits its data is given by
the address it accesses minus the starting address, divided by eight, plus the mem-
ory latency (six clocks). It is important to observe that bank 0 accesses a word in
the next block (i.e., it accesses 192 rather than 128 and then 256 rather than 192,
and so on). If bank 0 were to start at the lower address, we would require an extra
cycle to transmit the data, and we would transmit one value unnecessarily. While
this problem is not severe for this example, if we had 64 banks, up to 63 unneces-
sary clock cycles and transfers could occur. The fact that bank 0 does not access
a word in the same block of eight distinguishes this type of memory system from
interleaved memory. Normally, interleaved memory systems combine the bank ad-
dress and the base starting address by concatenation rather than addition. Also,
interleaved memories are almost always implemented with synchronized access.
Memory banks require address latches for each bank, which are not normally
needed in a system with only interleaving. This timing diagram is drawn as if all
banks access in clock 0, clock 16, etc. In practice, since the bus allocations needed
to return the words are staggered, the actual accesses are often staggered.

FIGURE B.8 Access timing for the first 64 double-precision words of the load.
After the six-clock-cycle initial latency, eight double-precision words are returned every
eight clock cycles.

Action
Memory
access

Next access
+ deliver last

8 words

Next access
+ deliver last

8 words

Deliver 
last

8 words

Time
0 6 14 22 62 70
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The number of banks in the memory system and the pipeline depth in
functional units are essentially counterparts, since they determine the initi
rates for operations using these units. The processor cannot access a m
bank faster than the memory cycle time. Thus, if memory is built from DRA
where the memory cycle time is about twice the access time, the processor 
twice as many banks as the above Example shows. For memory systems th
port multiple simultaneous vector accesses or allow nonsequential acces
vector loads or stores, the number of memory banks should be larger tha
minimum, otherwise, memory bank conflicts will exist. We explore this in m
detail in the next section. 

This section deals with two issues that arise in real programs: What do yo
when the vector length in a program is not exactly 64? How do you deal 
nonadjacent elements in vectors that reside in memory? First, let’s conside
issue of vector length.

Vector-Length Control

A vector-register processor has a natural vector length determined by the nu
of elements in each vector register. This length, which is 64 for DLXV, is 
likely to match the real vector length in a program. Moreover, in a real prog
the length of a particular vector operation is often unknown at compile time
fact, a single piece of code may require different vector lengths. For exam
consider this code:

 do 10 i = 1,n

10     Y(i) = a ∗ X(i) + Y(i)

The size of all the vector operations depends on n, which may not even be known
until runtime! The value of n might also be a parameter to a procedure contain
the above loop and therefore be subject to change during execution.

The solution to these problems is to create a vector-length register (VLR). The
VLR controls the length of any vector operation, including a vector load or st
The value in the VLR, however, cannot be greater than the length of the v
registers. This solves our problem as long as the real length is less than themaxi-
mum vector length (MVL) defined by the processor. 

What if the value of n is not known at compile time, and thus may be grea
than MVL? To tackle the second problem where the vector is longer than
maximum length, a technique called strip mining is used. Strip mining is the gen
eration of code such that each vector operation is done for a size less th

B.3 Two Real-World Issues:
Vector Length and Stride
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equal to the MVL. We could strip-mine the loop in the same manner that we
rolled loops in Chapter 4: Create one loop that handles any number of itera
that is a multiple of MVL and another loop that handles any remaining iterati
which must be less than MVL. In practice, compilers usually create a single s
mined loop that is parameterized to handle both portions by changing the le
The strip-mined version of the DAXPY loop written in FORTRAN, the maj
language used for scientific applications, is shown with C-style comments:

low = 1

VL = (n mod MVL) /*find the odd size piece*/

do 1 j = 0,(n / MVL) /*outer loop*/

do 10 i = low, low+VL-1 /*runs for length VL*/

Y(i) = a * X(i) + Y(i) /*main operation*/

10 continue

low = low+VL /*start of next vector*/

VL = MVL /*reset the length to max*/

1 continue

The term n/MVL represents truncating integer division (which is what FO
TRAN does) and is used throughout this section. The effect of this loop 
block the vector into segments which are then processed by the inner loop
length of the first segment is (n  mod MVL) and all subsequent segments are 
length MVL. This is depicted in Figure B.9. 

The inner loop of the code above is vectorizable with length VL, which is equal
to either (n  mod MVL) or MVL. The VLR register must be set twice—once at ea
place where the variable VL in the code is assigned. With multiple vector oper
tions executing in parallel, the hardware must copy the value of VLR when a
tor operation issues, in case VLR is changed for a subsequent vector operat

FIGURE B.9 A vector of arbitrary length processed with strip mining.  All blocks but the
first are of length MVL, utilizing the full power of the vector processor. In this figure, the vari-
able m is used for the expression (n  mod MVL).

1..m (m+1)..
m+MVL

(m+
MVL+1)
.. m+2 *

MVL

(m+2 *
MVL+1)
..m+3 *

MVL

. . . (n–MVL
+1).. n

Range of i

Value of j n/MVL1 2 3 . . .0

. . .

. . .
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In addition to the start-up overhead, we need to account for the overhe
executing the strip-mined loop. This strip-mining overhead, which arises f
the need to reinitiate the vector sequence and set the VLR, effectively adds 
vector start-up time, assuming that a convoy does not overlap with other ins
tions. If that overhead for a convoy is 10 cycles, then the effective overhea
64 elements increases by 10 cycles, or 0.15 cycles per element. 

There are two key factors that contribute to the running time of a strip-m
loop consisting of a sequence of convoys:

1. The number of convoys in the loop, which determines the number of chi
We use the notation Tchime for the execution time in chimes.

2. The overhead for each strip-mined sequence of convoys. This overhead
sists of the cost of executing the scalar code for strip mining each block, Tloop,
plus the vector start-up cost for each convoy, Tstart. 

There may also be a fixed overhead associated with setting up the vecto
quence the first time. In recent vector processors this overhead has become
small, so we ignore it.

The components can be used to state the total running time for a vecto
quence operating on a vector of length n, which we will call Tn:

The values of Tstart, Tloop, and Tchime are compiler and processor dependent. T
register allocation and scheduling of the instructions affect both what goes
convoy and the start-up overhead of each convoy.

For simplicity, we will use a constant value for Tloop on DLXV. Based on a va-
riety of measurements of CRAY-1 vector execution, the value chosen is 15
Tloop. At first glance, you might think that this value is too small. The overhea
each loop requires setting up the vector starting addresses and the strides,
menting counters, and executing a loop branch. In practice, these scalar in
tions can be totally or partially overlapped with the vector instructio
minimizing the time spent on these overhead functions. The value of Tloop of
course depends on the loop structure, but the dependence is slight compare
the connection between the vector code and the values of Tchime and Tstart.

E X A M P L E What is the execution time on DLXV for the vector operation A = B × s, 
where s is a scalar and the length of the vectors A and B is 200?

A N S W E R Assume the addresses of A and B are initially in Ra and Rb, s is in Fs, and 
recall that for DLX (and DLXV) R0 always holds 0. Since (200 mod 64) = 
8, the first iteration of the strip-mined loop will execute for a vector length 

Tn
n

MVL
------------- Tloop Tstart+( )× n T×

chime
+=
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of eight elements, and the following iterations will execute for a vector 
length of 64 elements. The starting byte addresses of the next segment of 
each vector is eight times the vector length. Since the vector length is ei-
ther eight or 64, we increment the address registers by 8 × 8 = 64 after the 
first segment and 8 × 64 = 512 for latter segments. The total number of 
bytes in the vector is 8 × 200 = 1600, and we test for completion by com-
paring the address of the next vector segment to the initial address plus 
1600. Here is the actual code:

ADDI R2,R0,#1600 ;total # bytes in vector

ADD R2,R2,Ra    ;address of the end of A vector

ADDI R1,R0,#8    ;loads length of 1st segment

MOVI2S VLR,R1      ;load vector length in VLR

ADDI R1,R0,#64   ;length in bytes of 1st segment

ADDI R3,R0,#64 ;vector length other segments

Loop: LV V1,Rb       ;load B

MULTSV V2,Fs,V1 ;vector *  scalar

SV Ra,V2       ;store A

ADD Ra,Ra,R1    ;address of next segment of A

ADD Rb,Rb,R1    ;address of next segment of B

ADDI R1,R0,#512  ;load byte offset next segment

MOVI2S VLR,R3      ;set length to 64 element

SUB R4,R2,Ra    ;at the end of A?

BNEZ R4,Loop ;if not, go back

The three vector instructions in the loop are dependent and must go into 
three convoys, hence Tchime = 3. Let’s use our basic formula:

The value of Tstart is the sum of 

■ The vector load start-up of 12 clock cycles

■ A seven-clock-cycle start-up for the multiply

■ A 12-clock-cycle start-up for the store.

Thus, the value of Tstart is given by

Tstart = 12 + 7 + 12 = 31

So, the overall value becomes

T200 = 660 + 4 × 31= 784

Tn
n

MVL
-------------- Tloop Tstart+( )× n T

chime
×+=

T200 4 15 Tstart+( ) 200 3×+×=

T200 60 4 Tstart×( ) 600+ + 660 4 Tstart×( )+= =
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The execution time per element with all start-up costs is then 784/200 = 
3.9, compared with a chime approximation of three. In section B.6, we will 
be more ambitious—allowing overlapping of separate convoys. ■

Figure B.10 shows the overhead and effective rates per element for the a
example (A = B × s) with various vector lengths. A chime counting model wou
lead to three clock cycles per element, while the two sources of overhead ad
clock cycles per element in the limit. 

The next few sections introduce enhancements that reduce this time. We
see how to reduce the number of convoys and hence the number of chimes
a technique called chaining. The loop overhead can be reduced by further ov
lapping the execution of vector and scalar instructions, allowing the scalar 
overhead in one iteration to be executed while the vector instructions in the p
ous instruction are completing. Finally, the vector start-up overhead can als
eliminated, using a technique that allows overlap of vector instructions in s
rate convoys. 

FIGURE B.10 This shows the total execution time per element and the total overhead
time per element, versus the vector length for the Example on page B-17. For short vec-
tors the total start-up time is more than one-half of the total time, while for long vectors it re-
duces to about one-third of the total time. The sudden jumps occur when the vector length
crosses a multiple of 64, forcing another iteration of the strip-mining code and execution of a
set of vector instructions. These operations increase Tn by Tloop + Tstart.

Total time
per element

Total
overhead
per element
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cycles
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Vector Stride

The second problem this section addresses is that the position in memory of
cent elements in a vector may not be sequential. Consider the straightfor
code for matrix multiply:

do 10 i = 1,100

do 10 j = 1,100

A(i,j) = 0.0

do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k) * C(k,j)

At the statement labeled 10 we could vectorize the multiplication of each ro
B with each column of C and strip-mine the inner loop with k as the index vari-
able. 

To do so, we must consider how adjacent elements in B and adjacent elements
in C are addressed. As we discussed in section 5.3, when an array is allo
memory it is linearized and must be laid out in either row-major or column-m
order. This linearization means that either the elements in the row or the elem
in the column are not adjacent in memory. For example, if the above loop 
written in FORTRAN, which allocates column-major order, the elements oB

that are accessed by iterations in the inner loop are separated by the row
times 8 (the number of bytes per entry) for a total of 800 bytes. In Chapter 5
saw that blocking could be used to improve the locality in cache-based sys
In vector processors we do not have caches, so we need another techni
fetch elements of a vector that are not adjacent in memory. 

This distance separating elements that are to be gathered into a single re
is called the stride. In the current example, using column-major layout for t
matrices means that matrix C has a stride of 1, or 1 double word (8 bytes), sep
rating successive elements, and matrix B has a stride of 100, or 100 double word
(800 bytes).

Once a vector is loaded into a vector register it acts as if it had logically a
cent elements. Thus a vector-register processor can handle strides greate
one, called nonunit strides, using only vector-load and vector-store operatio
with stride capability. This ability to access nonsequential memory locations
to reshape them into a dense structure is one of the major advantages of a
processor over a cache-based processor. Caches inherently deal with unit
data, so that while increasing block size can help reduce miss rates for larg
entific data sets, increasing block size can have a negative effect for data t
accessed with nonunit stride. While blocking techniques can solve some of 
problems (see section 5.3), the ability to efficiently access data that is not co
uous remains an advantage for vector processors on certain problems. 

On DLXV, where the addressable unit is a byte, the stride for our exam
would be 800. The value must be computed dynamically, since the size o
matrix may not be known at compile time, or—just like vector length—may
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change for different executions of the same statement. The vector stride, lik
vector starting address, can be put in a general-purpose register. Then the D
instruction LVWS (load vector with stride) can be used to fetch the vector int
vector register. Likewise, when a nonunit stride vector is being stored, SVWS

(store vector with stride) can be used. In some vector processors the load
stores always have a stride value stored in a register, so that only a single loa
a single store instruction are required. 

Complications in the memory system can occur from supporting strides gr
than one. In Chapter 5 we saw that memory accesses could proceed at full s
the number of memory banks was at least as large as the memory-access 
clock cycles. Once nonunit strides are introduced, however, it becomes poss
request accesses from the same bank at a higher rate than the memory-acce
When multiple accesses contend for a bank, a memory bank conflict occur
one access must be stalled. A bank conflict, and hence a stall, will occur if

E X A M P L E Suppose we have 16 memory banks with a read latency of 12 clocks. How 
long will it take to complete a 64-element vector load with a stride of 1? 
With a stride of 32?

A N S W E R Since the number of banks is larger than the read latency, for a stride of 
1, the load will take 12 + 64 = 76 clock cycles, or 1.2 clocks per element. 
The worst possible stride is a value that is a multiple of the number of 
memory banks, as in this case with a stride of 32 and 16 memory banks. 
Every access to memory will collide with the previous one. This leads to 
a read latency of 12 clock cycles per element and a total time for the 
vector load of 768 clock cycles. ■

Memory bank conflicts will not occur if the stride and number of banks are
atively prime with respect to each other and there are enough banks to avoid
flicts in the unit-stride case. When there are no bank conflicts, multiword and
strides run at the same rates. Increasing the number of memory banks to a n
greater than the minimum to prevent stalls with a stride of length 1 will decr
the stall frequency for some other strides. For example, with 64 banks, a stri
32 will stall on every other access, rather than every access. If we originally h
stride of 8 and 16 banks, every other access would stall; while with 64 ban
stride of 8 will stall on every eighth access. If we have multiple memory pipeli
we will also need more banks to prevent conflicts. In 1995, most vector super
puters have at least 64 banks, and some have as many as 1024 in the ma
memory configuration. Because bank conflicts can still occur in nonunit s
cases, many programmers favor unit stride accesses whenever possible. 

Least common multiple (Stride, Number of banks)
Stride

------------------------------------------------------------------------------------------------------------------------- Memory-access latency<
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Two factors affect the success with which a program can be run in vector m
The first factor is the structure of the program itself: Do the loops have true
dependences, or can they be restructured so as not to have such depend
This factor is influenced by the algorithms chosen and, to some extent, by
they are coded. The second factor is the capability of the compiler. While
compiler can vectorize a loop where no parallelism among the loop iteration
ists, there is tremendous variation in the ability of compilers to determine wh
er a loop can be vectorized. The techniques used to vectorize programs a
same as those discussed in Chapter 4 for uncovering ILP; here we simply r
how well these techniques work.

As an indication of the level of vectorization that can be achieved in scien
programs, let's look at the vectorization levels observed for the Perfect 
benchmarks, mentioned in Chapter 1. These benchmarks are large, real sci
applications. Figure B.11 shows the percentage of floating-point operation

each benchmark and the percentage executed in vector mode on the CRAY 
The wide variation in level of vectorization has been observed by several st
of the performance of applications on vector processors. While better comp
might improve the level of vectorization in some of these programs, most 

B.4 Effectiveness of Compiler Vectorization

Benchmark name FP operations
FP operations executed 

in vector mode

ADM 23% 68%

DYFESM 26% 95%

FLO52 41% 100%

MDG                                         28% 27%

MG3D 31% 86%

OCEAN 28% 58%

QCD 14% 1%

SPICE 16% 7%

TRACK 9% 23%

TRFD 22% 10%

FIGURE B.11 Level of vectorization among the Perfect Club benchmarks when exe-
cuted on the CRAY X-MP. The first column contains the percentage of operations that are
floating point, while the second contains the percentage of FP operations executed in vector
instructions. 
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require rewriting to achieve significant increases in vectorization. For examp
new program or a significant rewrite will be needed to obtain the benefits 
vector processor on SPICE.

There is also tremendous variation in how well compilers do in vectoriz
programs. As a summary of the state of vectorizing compilers, consider the
in Figure B.12, which shows the extent of vectorization for different proces
using a test suite of 100 hand-written FORTRAN kernels. The kernels were
signed to test vectorization capability and can all be vectorized by hand; we
see several examples of these loops in the Exercises. 

Three techniques for improving the performance of vector processors are
cussed in this section. The first deals with making a sequence of dependent 
operations run faster. The other two deal with expanding the class of loops
can be run in vector mode. The first technique, chaining, originated in the CRAY-
1, but is now supported on most vector processors. The techniques discus
the second and third parts of this section combat the effects of conditional e
tion and sparse matrices. The extensions are taken from a variety of proce
including the most recent supercomputers. 

Processor Compiler
Completely
vectorized

Partially 
vectorized

Not
vectorized

CDC CYBER-205 VAST-2 V2.21 62 5 33

Convex C-series FC5.0 69 5 26

CRAY X-MP CFT77 V3.0 69 3 28

CRAY X-MP CFT V1.15 50 1 49

CRAY-2 CFT2 V3.1a 27 1 72

ETA-10 FTN 77 V1.0 62 7 31

Hitachi S810/820 FORT77/HAP V20-2B 67 4 29

IBM 3090/VF VS FORTRAN V2.4 52 4 44

NEC SX/2 FORTRAN77 / SX V.040 66 5 29

FIGURE B.12 Result of applying vectorizing compilers to the 100 FORTRAN test kernels. For each
processor we indicate how many loops were completely vectorized, partially vectorized, and unvectorized.
These loops were collected by Callahan, Dongarra, and Levine [1988]. Two different compilers for the CRAY
X-MP show the large dependence on compiler technology.

B.5 Enhancing Vector Performance
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Chaining—The Concept of Forwarding Extended 
to Vector Registers

Consider the simple vector sequence

MULTV V1,V2,V3

ADDV V4,V1,V5

In DLXV, as it currently stands, these two instructions must be put into two s
rate convoys, since the instructions are dependent. On the other hand, if th
tor register, V1 in this case, is treated not as a single entity but as a grou
individual registers, then the ideas of forwarding can be conceptually extend
work on individual elements of a vector. This insight, which will allow the ADDV

to start earlier in this example, is called chaining. Chaining allows a vector opera
tion to start as soon as the individual elements of its vector source operan
come available: The results from the first functional unit in the chain 
“forwarded” to the second functional unit. In practice, chaining is often imp
mented by allowing the processor to read and write a particular register a
same time, albeit to different elements. Early implementations of chain
worked like forwarding, but this restricted the timing of the source and dest
tion instructions in the chain. Recent implementations use flexible chaining,
which allows a vector instruction to chain to essentially any other active ve
instruction, assuming that no structural hazard is generated. Flexible chainin
quires more read and write ports for the vector register file, but it is the form
chaining used in most recent machines. We assume this type of chaining thr
out the rest of this appendix.

Even though a pair of operations depend on one another, chaining allow
operations to proceed in parallel on separate elements of the vector. This pe
the operations to be scheduled in the same convoy and reduces the num
chimes required. For the sequence above, a sustained rate (ignoring start-
two floating-point operations per clock cycle, or one chime, can be achie
even though the operations are dependent! The total running time for the a
sequence becomes

Vector length + Start-up timeADDV + Start-up timeMULTV

Figure B.13 shows the timing of a chained and an unchained version of the a
pair of vector instructions with a vector length of 64. This convoy requires 
chime; however, because it uses chaining, the start-up overhead will be se
the actual timing of the convoy. In Figure B.13, the total time for chained op
tion is 77 clock cycles, or 1.2 cycles per result. With 128 floating-point operat
done in that time, 1.7 FLOPs per clock cycle are obtained. For the unchained
sion, there are 141 clock cycles or 0.9 FLOPs per clock cycle. 

Although chaining allows us to reduce the chime component of the execu
time by putting two dependent instructions in the same convoy, it does
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eliminate the start-up overhead. If we want an accurate running time estimat
must count the start-up time both within and across convoys. With chaining
number of chimes for a sequence is determined by the number of different v
functional units available in the processor and the number required by the a
cation. In particular, no convoy can contain a structural hazard. This mean
example, that a sequence containing two vector memory instructions must ta
least two convoys, and hence two chimes, on a processor like DLXV with 
one vector load-store unit. 

We will see in section B.6 that chaining plays a major role in boosting ve
performance. In fact, chaining is so important that virtually every vector pro
sor now supports flexible chaining.

Conditionally Executed Statements

In the last section, we saw that many programs only achieved low to mod
levels of vectorization. Because of Amdahl’s Law, the speedup on such prog
will be very limited. Two reasons why higher levels of vectorization are 
achieved are the presence of conditionals (if statements) inside loops and th
of sparse matrices. Programs that contain if statements in loops cannot be 
vector mode using the techniques we have discussed so far because the i
ments introduce control dependences into a loop. Likewise, sparse matrices
not be efficiently implemented using any of the capabilities we have seen s
this is one factor in the lack of vectorization for SPICE. We discuss strategie
dealing with conditional execution here, leaving the discussion of sparse ma
to the following subsection.

Consider the following loop:

do 100 i = 1, 64

if  (A(i). ne. 0) then

A(i) = A(i) – B(i)

endif

100 continue

FIGURE B.13 Timings for a sequence of dependent vector operations ADDV and
MULTV, both unchained and chained. The 6- and 7-clock-cycle delays are the latency of
the adder and multiplier.

Unchained

Chained

Total = 77

Total = 141
7 64

7 64

MULTV

64

ADDV

64

MULTV ADDV
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This loop cannot normally be vectorized because of the conditional execu
of the body; however, if the inner loop could be run for the iterations for wh
A(i) ≠ 0, then the subtraction could be vectorized. In Chapter 4, we saw tha
conditionally executed instructions could turn such control dependences
data dependences, enhancing the ability to parallelize the loop. Vector pr
sors can benefit from an equivalent capability for vectors.

The extension that is commonly used for this capability is vector-mask
control. The vector-mask control uses a Boolean vector of length MVL to con
the execution of a vector instruction just as conditionally executed instruct
use a Boolean condition to determine whether an instruction is executed. W
the vector-mask register is enabled, any vector instructions executed operate o
on the vector elements whose corresponding entries in the vector-mask re
are 1. The entries in the destination vector register that correspond to a 0 
mask register are unaffected by the vector operation. If the vector-mask regis
set by the result of a condition, only elements satisfying the condition will be
fected. Clearing the vector-mask register sets it to all 1s, making subsequen
tor instructions operate on all vector elements. The following code can now
used for the above loop, assuming that the starting addresses of A and B areRa

and Rb, respectively:

LV V1,Ra ;load vector A into V1

LV V2,Rb ;load vector B

LD F0,#0 ;load FP zero into F0

SNESV F0,V1 ;sets VM(i) to 1 if V1(i) ≠F0 

SUBV V1,V1,V2 ;subtract under vector mask 

CVM ;set the vector mask to all 1s

SV Ra,V1 ;store the result in A

Most recent vector processors provide vector-mask control. The vector-m
capability described here is available on some processors, but others allo
use of the vector mask with only a subset of the vector instructions. 

Using a vector-mask register does, however, have disadvantages. When w
amined conditionally executed instructions, we saw that such instructions sti
quire execution time when the condition is not satisfied. Nonetheless,
elimination of a branch and the associated control dependences can make 
ditional instruction faster even if it sometimes does useless work. Similarly, 
tor instructions executed with a vector mask still take execution time, even fo
elements where the mask is 0. Likewise, even with a significant number of z
in the mask, using vector-mask control may still be significantly faster than u
scalar mode. In fact, the large difference in potential performance between v
and scalar mode makes the inclusion of vector-mask instructions critical. 

Second, in some vector processors the vector mask serves only to disab
storing of the result into the destination register, and the actual operation sti
curs. Thus, if the operation in the above example were a divide rather th
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subtract and the test was on B rather than A, false floating-point exceptions m
result since a division by 0 would occur. Processors that mask the operati
well as the storing of the result avoid this problem. 

Sparse Matrices

There are techniques for allowing programs with sparse matrices to execu
vector mode. In a sparse matrix, the elements of a vector are usually stor
some compacted form and then accessed indirectly. Assuming a simplified s
structure, we might see code that looks like this:

do 100 i = 1,n

100 A(K(i)) = A(K(i)) + C(M(i))

This code implements a sparse vector sum on the arrays A and C, using index vec-
tors K and M to designate the nonzero elements of A and C. (A and C must have the
same number of nonzero elements—n of them.) Another common representatio
for sparse matrices uses a bit vector to say which elements exist and a dens
tor for the nonzero elements. Often both representations exist in the same
gram. Sparse matrices are found in many codes, and there are many w
implement them, depending on the data structure used in the program. 

A primary mechanism for supporting sparse matrices is scatter-gather opera-
tions using index vectors. The goal of such operations is to support moving
tween a dense representation (i.e., zeros are not included) and no
representation (i.e., the zeros are included) of a sparse matrix. A gather operation
takes an index vector and fetches the vector whose elements are at the addre
given by adding a base address to the offsets given in the index vector. The
is a nonsparse vector in a vector register. After these elements are operated
dense form, the sparse vector can be stored in expanded form by a scatter store,
using the same index vector. Hardware support for such operations is calledscat-
ter-gather and appears on several processors. The instructions LVI  (load vector
indexed) and SVI  (store vector indexed) provide these operations in DLXV. F
example, assuming that Ra, Rc, Rk, and Rm contain the starting addresses of th
vectors in the above sequence, the inner loop of the sequence can be code
vector instructions such as

LV   Vk,Rk ;load K 

LVI Va,(Ra+Vk) ;load A(K(I))

LV  Vm,Rm ;load M

LVI Vc,(Rc+Vm) ;load C(M(I))

ADDV Va,Va,Vc ;add them

SVI (Ra+Vk),Va ;store A(K(I))
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This technique allows code with sparse matrices to be run in vector mode
source code above would never be automatically vectorized by a compiler be
cause the compiler cannot know that the elements of K are distinct values, and
thus that no dependences exist. Instead, a programmer directive would te
compiler that it could run the loop in vector mode; without such directives, p
grams such as SPICE will not be vectorized even if the hardware support ex

A scatter-gather capability is included on many of the recent supercompu
Such operations rarely run at one element per clock, but they are still much 
than the alternative, which may be a scalar loop. If the sparsity properties
matrix change, a new index vector must be computed. Many processors pr
support for computing the index vector quickly. The CVI (create vector index) in-
struction in DLXV creates an index vector given a stride (m), where the values in
the index vector are 0, m, 2 × m, ..., 63 × m. Some processors provide an instru
tion to create a compressed index vector whose entries correspond to the
tions with a 1 in the mask register. Other vector architectures provide a meth
compress a vector. In DLXV, we define the CVI instruction to always create a
compressed index vector using the vector mask. When the vector mask 
ones, a standard index vector will be created. 

The indexed loads-stores and the CVI instruction provide an alternative meth
od to support conditional vector execution. Here is a vector sequence that im
ments the loop we saw on page B-25:

LV  V1,Ra   ;load vector A into V1

LD  F0,#0    ;load FP zero into F0

SNESV  F0,V1     ;sets the VM to 1 if V1(i) ≠F0 

CVI  V2,#8    ;generates indices in V2

POP  R1,VM    ;find the number of 1’s in VM

MOVI2S  VLR,R1   ;load vector length register

CVM   ;clears the mask

LVI  V3,(Ra+V2) ;load the nonzero A elements

LVI  V4,(Rb+V2) ;load corresponding B elements

SUBV  V3,V3,V4   ;do the subtract

SVI  (Ra+V2),V3 ;store A back

Whether the implementation using scatter-gather is better than the cond
ally executed version depends on the frequency with which the condition h
and the cost of the operations. Ignoring chaining, the running time of the first
sion (on page B-25) is 5n + c1. The running time of the second version, using i
dexed loads and stores with a running time of one element per clock, is 4n + 4 × f
× n + c2, where f is the fraction of elements for which the condition is true (i.e.,
≠ 0). If we assume that the values of c1 and c2 are comparable, or that they ar
much smaller than n, we can find when this second technique is better.
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We want Time1 ≥ Time2, so 

That is, the second method is faster if less than one-quarter of the elemen
nonzero. In many cases the frequency of execution is much lower. If the i
vector can be reused, or if the number of vector statements within the if state
grows, the advantage of the scatter-gather approach will increase sharply.

In this section we look at different measures of performance for vector proce
and what they tell us about the processor. To determine the performance of 
cessor on a vector problem we must look at the start-up cost and the sus
rate. The simplest and best way to report the performance of a vector proc
on a loop is to give the execution time of the vector loop. For vector loops pe
often give the MFLOPS (millions of floating-point operations per second) ra
rather than execution time. We use the notation Rn for the MFLOPS rating on a
vector of length n. Using the measurements Tn (time) or Rn (rate) is equivalent if
the number of FLOPs is agreed upon (see Chapter 1 for a longer discussi
MFLOPS). In any event, either measurement should include the overhead.

In this section we examine the performance of DLXV on our DAXPY loop
looking at performance from different viewpoints. We will continue to comp
the execution time of a vector loop using the equation developed in section
At the same time, we will look at different ways to measure performance u
the computed time. The constant values for Tloop used in this section introduce
some small amount of error, which will be ignored.

Measures of Vector Performance

Because vector length is so important in establishing the performance of a
cessor, length-related measures are often applied in addition to time
MFLOPS. These length-related measures tend to vary dramatically across d
ent processors and are interesting to compare. (Remember, though, that time is al-
ways the measure of interest when comparing the relative speed of
processors.) Three of the most important length-related measures are

B.6 Putting It All Together:
Performance of Vector Processors

Time1 5 n( )=

Time2 4n 4 f n××+=

5n 4n 4 f n××+≥
1
4
--- f≥
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■ R∞—The MFLOPS rate on an infinite-length vector. Although this meas
may be of interest when estimating peak performance, real problems d
have unlimited vector lengths, and the overhead penalties encountered i
problems will be larger.

■ N1/2—The vector length needed to reach one-half of R∞. This is a good mea-
sure of the impact of overhead.

■ Nv—The vector length needed to make vector mode faster than scalar m
This measures both overhead and the speed of scalars relative to vectors

Let’s look at these measures for our DAXPY problem running on DLX
When chained, the inner loop of the DAXPY code in convoys looks like Fig
B.14 (assuming that Rx and Ry hold starting addresses).

Recall our performance equation for the execution time of a vector loop wn
elements, Tn:

Chaining allows the loop to run in three chimes (and no less, since there i
memory pipeline); thus Tchime = 3. If Tchime were a complete indication of per
formance, the loop would run at a MFLOPS rate of 2/3 × clock rate (since there
are 2 FLOPs per iteration). Thus, based only on the chime count, a 200-
DLXV would run this loop at 133 MFLOPS assuming no strip-mining or start
overhead. There are several ways to improve the performance: add addi
vector load-store units, allow convoys to overlap to reduce the impact of sta
overheads, and decrease the number of loads required by vector register a
tion. We will examine the first two extensions in this section. The last optim
tion is actually used for the Cray-1, DLXV’s cousin, to boost the performance
50%. Reducing the number of loads requires an interprocedural optimization
examine this transformation in Exercise B.6. Before we examine the first two
tensions, let’s see what the real performance, including overhead, is.

The Peak Performance of DLXV on DAXPY

First, we should determine what the peak performance, R∞, really is, since we
know it must differ from the ideal 133-MFLOPS rate. For now, we continue
use the simplifying assumption that a convoy cannot start until all the instruc
in an earlier convoy have completed; later we will remove this restriction. Us

LV V1,Rx MULTSV 
V2,F0,V1

Convoy 1: chained load and multiply

LV V3,Ry ADDV V4,V2,V3 Convoy 2: second load and ADD, chained

SV Ry,V4 Convoy 3: store the result

FIGURE B.14 The chained inner loop of the DAXPY code in convoys.

Tn Tbase
n

MVL
-------------- Tloop Tstart+( )× n T

chime
×+ +=
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this simplification, the start-up overhead for the vector sequence is simply
sum of the start-up times of the instructions: 

Using MVL = 64, Tloop = 15, Tstart= 49, and Tchime = 3 in the performance
equation, and assuming that n is not an exact multiple of 64, the time for an n-
element operation is 

The sustained rate is actually over 4 clock cycles per iteration, rather than th
oretical rate of 3 chimes, which ignores overhead. The major part of the d
ence is the cost of the start-up overhead for each block of 64 elements (49 
versus 15 for the loop overhead). 

We can now compute R∞ for a 200-MHz clock as

The numerator is independent of n, hence

The performance without the start-up overhead, which is the peak perform
given the vector functional unit structure, is now 1.33 times higher. In actuality
gap between peak and sustained performance for this benchmark is even lar

Sustained Performance of DLXV on the Linpack Benchmark

The Linpack benchmark is a Gaussian elimination on a 100 × 100 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of length k is used k
times. Thus, the average vector length is given by

Tstart 12 7 12 6 12+ + + + 49= =

Tn
n
64
------ 15 49+( ) 3n+×=

n 64+( ) 3n+=

4n 64+=

R∞
Operations per iteration Clock rate×

Clock cycles per iteration
---------------------------------------------------------------------------------------- 

 
n ∞→
lim=

R∞
Operations per iteration Clock rate×

Clock cycles per iteration( )
n ∞→
lim

----------------------------------------------------------------------------------------=

Clock cycles per iteration( )
n ∞→
lim

Tn
n

------ 
 

n ∞→
lim

4n 64+
n

------------------ 
 

n ∞→
lim 4= = =

R∞
2 200 MHz×

4
-------------------------------- 100 MFLOPS= =
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Now we can obtain an accurate estimate of the performance of DAXPY us
vector length of 66.

The peak number, ignoring start-up overhead, is 1.64 times higher than
estimate of sustained performance on the real vector lengths. In actual pra
the Linpack benchmark contains a nontrivial fraction of code that cannot be
torized. Although this code accounts for less than 20% of the time before ve
ization, it runs at less than one-tenth of the performance when counted as FL
Thus, Amdahl’s Law tells us that the overall performance will be significan
lower than the performance estimated from analyzing the inner loop.

Since vector length has a significant impact on performance, the N1/2 and Nv
measures are often used in comparing vector machines.

E X A M P L E What is N1/2 for just the inner loop of DAXPY for DLXV with a 200-MHz 
clock?

A N S W E R Using R∞ as the peak rate, we want to know the vector length that will 
achieve about 50 MFLOPS. We start with the formula for MFLOPS as-
suming that the measurement is made for N1/2 elements:

Simplifying this and then assuming N1/2 ≤ 64, so that 
, yields

i
2

i 1=

99

∑

i

i 1=

99

∑
--------------- 66.3=

T66 2 15 49+( ) 66 3×+× 128 198+ 326= = =

R66
2 66 200××

326
------------------------------  MFLOPS  81 MFLOPS= =

MFLOPS
FLOPs executed in N1 2⁄ iterations

Clock cycles to execute  N1 2⁄ iterations
--------------------------------------------------------------------------------------------------- Clock cycles

Second
------------------------------ 10

6–××=

50
2 N1 2⁄×

T
N1 2⁄

---------------------- 200×=

Tn 64≤ 1 64× 3 n×+=

T
N1 2⁄

8 N1 2⁄×=

1 64× 3 N1 2⁄×+ 8 N1 2⁄×=

5 N1 2⁄× 64=
N1 2⁄ 12.8=
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So N1/2 = 13; that is, a vector of length 13 gives approximately one-half 
the peak performance for the DAXPY loop on DLXV. ■

E X A M P L E What is the vector length, Nv, such that the vector operation runs faster 
than the scalar? 

A N S W E R Again, we know that Nv < 64. The time to do one iteration in scalar mode 
can be estimated as 10 + 12 + 12 + 7 + 6 +12 = 59 clocks, where 10 is the 
estimate of the loop overhead, known to be somewhat less than the strip-
mining loop overhead. In the last problem, we showed that this vector loop 
runs in vector mode in time  clock cycles. Therefore,

For the DAXPY loop, vector mode is faster than scalar as long as the vec-
tor has at least two elements. This number is surprisingly small, as we will 
see in the next section (Fallacies and Pitfalls). ■

DAXPY Performance on an Enhanced DLXV

DAXPY, like many vector problems, is memory limited. Consequently, p
formance could be improved by adding more memory-access pipelines. Th
the major architectural difference between the CRAY X-MP (and later pro
sors) and the CRAY-1. The CRAY X-MP has three memory pipelines, comp
with the CRAY-1’s single memory pipeline, and the X-MP has more flexi
chaining. How does this affect performance?

E X A M P L E What would be the value of T66 for DAXPY on DLXV if we added two more 
memory pipelines?

A N S W E R With three memory pipelines all the instructions fit in one convoy and take 
one chime. The start-up overheads are the same, so

Tn 64≤ 64 3 n×+=

64 3N
v

+ 59N
v

=

N
v

64
56
------=

Nv 2=

T66
66
64
------ Tloop Tstart+( ) 66 T

chime
×+×=

T66 2 15 49+( ) 66 1×+× 194= =
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With three memory pipelines, we have reduced the clock-cycle count for 
sustained performance from 326 to 194, a factor of 1.7. Note the effect of 
Amdahl’s Law: We improved the theoretical peak rate, as measured by 
the number of chimes by a factor of 3, but only achieved an overall im-
provement of a factor of 1.7 in sustained performance. ■

Another improvement could come from allowing different convoys to over
and also allowing the scalar loop overhead to overlap with the vector instruct
This requires that one vector operation be allowed to begin using a funct
unit before another operation has completed and complicates the instruction
logic. Allowing this overlap eliminates the separate start-up overhead for e
convoy except the first and hides the loop overhead as well. 

To achieve the maximum hiding of strip-mining overhead, we need to be 
to overlap strip-mined instances of the loop, allowing two instances of a co
as well as possibly two instances of the scalar code to be in execution sim
neously. This requires the same techniques we looked at in Chapter 4 to 
WAR hazards, although because no overlapped read and write of a single v
element is possible, copying can be avoided. This technique, called tailgating,
was used in the Cray-2. Alternatively, we could unroll the outer loop to cre
several instances of the vector sequence using different register sets (ass
sufficient registers), just as we did in Chapter 4. By allowing maximum ove
of the convoys and the scalar loop overhead, the start-up and loop overhead
only be seen once per vector sequence, independent of the number of conv
and the instructions in each convoy. In this way a processor with vector reg
can have both low start-up overhead for short vectors and high peak perform
for very long vectors.

E X A M P L E What would be the values of R∞ and T66 for DAXPY on DLXV if we added 
two more memory pipelines and allowed the strip-mining and start-up 
overhead to be fully overlapped?

A N S W E R R∞
Operations per iteration Clock rate×

Clock cycles per iteration
---------------------------------------------------------------------------------------- 

 
n ∞→
lim=

Clock cycles per iteration( )
n ∞→
lim

Tn
n

------ 
 

n ∞→
lim=
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Since the overhead is only seen once, Tn = n + 49 + 15 = n + 64. Thus, 

Adding the extra memory pipelines and more flexible issue logic yields an 
improvement in peak performance of a factor of 4. However, T66 = 130, so 
for shorter vectors, the sustained performance improvement is about 326/
130 = 2.5 times. ■

In summary, we have examined several measures of vector performance
oretical peak performance can be calculated based purely on the value of Tchime
as 

By including the loop overhead, we can calculate values for peak perform
for an infinite-length vector (R∞) and also for sustained performance, Rn for a
vector of length n, which is computed as

Using these measures we also can find N1/2 and Nv, which give us another way of
looking at the start-up overhead for vectors and the ratio of vector to scalar s
A wide variety of measures of performance of vector processors are use
understanding the range of performance that applications may see on a 
processor.

Pitfall: Concentrating on peak performance and ignoring start-up overhea

Early vector processors such as the TI ASC and the CDC STAR-100 had
start-up times. For some vector problems, Nv could be greater than 100! Today
the supercomputers from Japan often have higher sustained rates than th
Research processors. But with start-up overheads that are 50–100% high
faster sustained rates often provide no real advantage. On the CYBER-20
start-up overhead for DAXPY is 158 clock cycles, substantially increasing
break-even point. With a single vector unit, which contains 2 memory pipeli

B.7 Fallacies and Pitfalls

Tn
n

------ 
 

n ∞→
lim

n 64+
n

--------------- 
 

n ∞→
lim 1= =

R∞
2 200 MHz×

1
-------------------------------- 400 MFLOPS= =

Number of FLOPs per iteration Clock rate×
T

chime

----------------------------------------------------------------------------------------------------------

Rn
Number of FLOPs per iteration n× Clock rate×

Tn
-------------------------------------------------------------------------------------------------------------------=
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the CYBER-205 can sustain a rate of 2 clocks per iteration. The time for DAX
for a vector of length n is therefore roughly 158 + 2n. If the clock rates of the
CRAY-1 and the CYBER-205 were identical, the CRAY-1 would be faster u
n > 64. Because the CRAY-1 clock is also faster (even though the 205 is 
er), the crossover point is over 100. Comparing a four-vector-pipeline CYB
205 (the maximum-size processor) with the CRAY X-MP that was delive
shortly after the 205, the 205 completes two results per clock cycle—twic
fast as the X-MP. However, vectors must be longer than about 200 for
CYBER-205 to be faster. The problem of start-up overhead has been the m
difficulty for the memory-memory vector architectures, hence their lack
popularity.

Pitfall: Increasing vector performance, without comparable increases in s
lar performance.

This was a problem on many early vector processors, and a place where Se
Cray rewrote the rules. Many of the early vector processors had compara
slow scalar units (as well as large start-up overheads). Even today, proce
with higher peak vector performance can be outperformed by a processor
lower vector performance but better scalar performance. Good scalar pe
mance keeps down overhead costs (strip mining, for example) and reduce
impact of Amdahl’s Law. A good example of this comes from comparing a 
scalar processor and a vector processor with lower scalar performance. Th
ermore FORTRAN kernels are a collection of 24 scientific kernels with vary
degrees of vectorization. Figure B.15 shows the performance of two diffe
processors on this benchmark. Despite the vector processor's higher peak p
mance, its low scalar performance makes it slower than a fast scalar proc
The next fallacy is closely related.

Fallacy: You can get vector performance without providing memory ba
width.

Processor Minimum rate for any loop Maximum rate for any loop Harmonic mean of all 24 loops

MIPS M/120-5 0.80 MFLOPS 3.89 MFLOPS 1.85 MFLOPS

Stardent-1500 0.41 MFLOPS 10.08 MFLOPS 1.72 MFLOPS

FIGURE B.15 Performance measurements for the Livermore FORTRAN kernels on two different processors.  Both
the MIPS M/120-5 and the Stardent-1500 (formerly the Ardent Titan-1) use a 16.7-MHz MIPS R2000 chip for the main CPU.
The Stardent-1500 uses its vector unit for scalar FP and has about half the scalar performance (as measured by the mini-
mum rate) of the MIPS M/120, which uses the MIPS R2010 FP chip. The vector processor is more than a factor of 2.5 times
faster for a highly vectorizable loop (maximum rate). However, the lower scalar performance of the Stardent-1500 negates
the higher vector performance when total performance is measured by the harmonic mean on all 24 loops.
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As we saw with the DAXPY loop, memory bandwidth is quite important. DAXP
requires 1.5 memory references per floating-point operation, and this ratio is
cal of many scientific codes. Even if the floating-point operations took no tim
CRAY-1 could not increase the performance of the vector sequence used, sinc
memory limited. The CRAY-1 performance on Linpack jumped when the comp
used clever transformations to change the computation so that values could b
in the vector registers. This lowered the number of memory references per F
and improved the performance by nearly a factor of 2! Thus, the memory b
width on the CRAY-1 became sufficient for a loop that formerly required m
bandwidth.

In the late 1980s rapid performance increases in efficiently pipelined sc
processors led to a dramatic closing of the gap between vector supercomp
costing millions of dollars, and fast, pipelined, VLSI microprocessors cos
less than tens of thousands of dollars. In Chapter 1, we saw that a desk-sid
cessor offered nearly the performance of a vector supercomputer introduce
years earlier for less than a tenth of the price. Comparing that processor a
its contemporary, a Cray C-90, would show a reduced price-performance ad
tage, but still exceeding a factor of three times. While the price advantage c
from the use of microprocessor technology, the high performance comes from
exploitation of instruction-level parallelism in the microprocessor, which allo
CPIs to be under 1. 

For scientific programs, an interesting counterpart to CPI is clock cycles
FLOP, or CPF. We saw in this chapter that for vector processors this numbe
typically in the range of 2 (for a CRAY X-MP style processor) to 4 (for a CRAY
style processor); a C-90 might reduce this number further but probably not b
1 to 1.5. In Chapter 4, we saw that the pipelined processor varied from ab
(for DLX) down to about 2.5 (for a superscalar DLX with no memory syst
losses running a DAXPY-type loop). For processors like an IBM Power-2
MIPS R8000 with multiple memory pipelines and a multiply-add instruction, t
number could be as low as 1. 

In addition to the use of vectors rather than multiple issue, the other majo
tinction between vector machines and advanced scalar machines is the u
vector memory systems versus caches. As we saw earlier in this appendix, 
memory systems can have significant advantages when accesses do not ha
stride. This performance advantage, however, comes at a significant price d
vantage. To keep the start-up penalties of vector loads small and to keep the
ber of required memory banks reasonable, many high-end vector machine
SRAM for the main memory. While SRAM has an access time several times 
er than that of DRAM, it costs roughly 10 times as much per bit!

Recent trends in vector processor design have focused on high peak-v
performance and multiprocessing. Meanwhile, high-speed scalar processors
centrate on keeping the ratio of peak to sustained performance near 1. Thus

B.8 Concluding Remarks
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peak rates advance comparably, the sustained rates of the scalar processo
advance more quickly, and the scalar processors will continue to close the
gap. These multiple-issue scalar processors can rival or exceed the perform
of vector processors with comparable clock speeds, especially for levels of
torization below 70%. 

In 1994, we saw two dramatic demonstrations that the gap between v
processors and superscalars may disappear in the future. First, microproc
with clock rates exceeding those of the high-end Cray C-90 appeared. Se
microprocessors such as the MIPS R8000 (TFP) and the IBM Power-2 deliv
CPF numbers competitive with vector processors by issuing multiple mem
references and FP operations per cycle. In the near future, it is likely that de
ers will be able to use the advances in silicon technology to achieve low CPF
formance while also achieving a high clock rate. At that point it may be prima
the memory systems that distinguish vector processors from microproce
based superscalars. Advances in compiler technology for cache-based sy
such as blocking and prefetching, are closing the performance gap in the me
system, while cache-based systems continue to have large cost advantage
cache organizations, such as that used in the R8000 (a large pipelined cac
all FP data), are also helping to close the performance gap. New advanc
likely to further narrow the advantages of vector-oriented memory systems 
by reducing the performance gap and by narrowing the range of applica
where a vector memory system is better than a cache-based system. Ove
Cray C-90 processor has a SPECfp rating that is about 1.8 times higher th
R8000 processor and a price almost 20 times higher. On some benchmarks
ever, the C-90 is over five times faster; while on others it is about half the s
of the R8000. Whether the range of applications for which the C-90 has a
stantial performance advantage will remain large enough to justify the prem
price for vector computers remains to be seen. 

The first vector processors were the CDC STAR-100 (see Hintz and Tate [1
and the TI ASC (see Watson [1972]), both announced in 1972. Both w
memory-memory vector processors. They had relatively slow scalar units—
STAR used the same units for scalars and vectors—making the scalar pip
extremely deep. Both processors had high start-up overhead and worked o
tors of several hundred to several thousand elements. The crossover betwee
lar and vector could be over 50 elements. It appears that not enough attentio
paid to the role of Amdahl’s Law on these two processors. 

Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Rese
and introduced the CRAY-1 in 1976 (see Russell [1978]). The CRAY-1 use
vector-register architecture to significantly lower start-up overhead. He also
efficient support for nonunit stride and invented chaining. Most importantly,

B.9 Historical Perspective and References
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CRAY-1 was the fastest scalar processor in the world at that time. This matc
of good scalar and vector performance was probably the most significant fac
making the CRAY-1 a success. Some customers bought the processor prim
for its outstanding scalar performance. Many subsequent vector processo
based on the architecture of this first commercially successful vector proce
Baskett and Keller [1977] provide a good evaluation of the CRAY-1.

In 1981, CDC started shipping the CYBER-205 (see Lincoln [1982]). The 
had the same basic architecture as the STAR, but offered improved perform
all around as well as expandability of the vector unit with up to four vector p
lines, each with multiple functional units and a wide load-store pipe that prov
multiple words per clock. The peak performance of the CYBER-205 greatly
ceeded the performance of the CRAY-1. However, on real programs, the
formance difference was much smaller. 

The CDC STAR processor and its descendant, the CYBER-205, w
memory-memory vector processors. To keep the hardware simple and suppo
high bandwidth requirements (up to three memory references per FLOP), 
processors did not efficiently handle nonunit stride. While most loops have
stride, a nonunit stride loop had poor performance on these processors be
memory-to-memory data movements were required to gather together (and
ter back) the nonadjacent vector elements; these operations used special s
gather instructions. In addition, there was special support for sparse vector
used a bit vector to represent the zeros and nonzeros and a dense vector 
zero values. These more complex vector operations were slow because 
long memory latency, and it was often faster to use scalar mode for sparse o
unit stride operations. Schneck [1987] described several of the early pipe
processors (e.g., Stretch) through the first vector processors, including the
and CRAY-1. Dongarra [1986] did another good survey, focusing on more re
processors.

In 1983, Cray Research shipped the first CRAY X-MP (see Chen [198
With an improved clock rate (9.5 ns versus 12.5 on the CRAY-1), better chai
support, and multiple memory pipelines, this processor maintained the Cray
search lead in supercomputers. The CRAY-2, a completely new design 
figurable with up to four processors, was introduced later. A major feature o
CRAY-2 was the use of DRAM, which made it possible to have very large me
ries. The first CRAY-2 with its 256 M word (60-bit words) memory contain
more memory than the total of all the Cray machines shipped to that point!
CRAY-2 had a much faster clock than the X-MP, but also much deeper pipel
however, it lacked chaining, had an enormous memory latency, and had onl
memory pipe per processor. In general, the CRAY-2 is only faster than the C
X-MP on problems that require its very large main memory. 

The 1980s also saw the arrival of smaller-scale vector processors, called 
supercomputers. Priced at roughly one-tenth the cost of a supercomputer ($
$1 million versus $5 to $10 million), these processors caught on quickly.
though many companies joined the market, the two companies that were 



B-40 Appendix B   Vector Processors

ector
size
n the

ity of
sing
con-
 com-
n in

arket-
3]),
(see
-MP

k per-
ead,
8 in
ffer-
 Japa-

ver-
ycle
rally
puters

s split
n the
, un-

ent-
cost-
orts

to 16
991.
ced
vail-
hine,
(500
 the
 for
ory

. In

per-
ered
in a
successful were Convex and Alliant. Convex started with a uniprocessor v
processor (C-1) and now offers a small multiprocessor (C-2); they empha
Cray software capability. One of the keys to the success of Convex has bee
effectiveness of their compiler (see Figure B.12 on page B-23) and the qual
their Unix OS implementation. The Convex example illustrates the increa
importance of software—even in the supercomputer business. Alliant [1987] 
centrated more on the multiprocessor aspects; they built an eight-processor
puter, with each processor offering vector capability. Alliant ceased operatio
the early 1990s. 

In 1983, processor vendors from Japan entered the supercomputer m
place, starting with the Fujitsu VP100 and VP200 (Miura and Uchida [198
and later expanding to include the Hitachi S810 and the NEC SX/2 
Watanabe [1987]). These processors have proved to be close to the CRAY X
in performance. In general, these three processors have much higher pea
formance than the CRAY X-MP. However, because of large start-up overh
their typical performance is often lower than the CRAY X-MP (see Figure 1.1
Chapter 1). The CRAY X-MP favored a multiple-processor approach, first o
ing a two-processor version and later a four-processor. In contrast, the three
nese processors had expandable vector capabilities. 

In 1988, Cray Research introduced the CRAY Y-MP—a bigger and faster 
sion of the X-MP. The Y-MP allows up to eight processors and lowers the c
time to 6 ns. With a full complement of eight processors, the Y-MP was gene
the fastest supercomputer, though the single-processor Japanese supercom
may be faster than a one-processor Y-MP. In late 1989 Cray Research wa
into two companies, both aimed at building high-end processors available i
early 1990s. Seymour Cray headed the spin-off, Cray Computer Corporation
til its demise in 1995. Their initial processor, the CRAY-3, was to be implem
ed in gallium arsenide, but they were unable to develop a reliable and 
effective implementation technology. The CRAY-3 was cancelled and eff
were aimed at the CRAY-4, scheduled for delivery in 1995–96. 

Cray Research focused on the C90, a new high-end processor with up 
processors and a clock rate of 240 MHz. This processor was delivered in 1
Typical configurations are about $15 million. In 1993, Cray Research introdu
their first highly parallel processor, the T3D. In 1995, they announced the a
ability of both a new low-end vector machine, the J90, and a high-end mac
the T90. The T90 is much like the C90, but offers a clock that is twice as fast 
MHz), using three-dimensional packaging and optical clock distribution. Like
C90, the T90 costs in the tens of millions, though a single CPU is available
$2,500,000. The J90 is a CMOS-based vector machine using DRAM mem
starting at $250,000, but with typical configurations running about $1 million
mid 1995, Silicon Graphics acquired Cray Research, Inc.

In the early 1980s, CDC spun out a group, called ETA, to build a new su
computer, the ETA-10, capable of 10 gigaFLOPS. The ETA processor deliv
in the late 1980s (see Fazio [1987]) and used low-temperature CMOS 
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configuration with up to 10 processors. Each processor retained the mem
memory architecture based on the CYBER-205. Although the ETA-10 achie
enormous peak performance, its scalar speed was not comparable. In 1989
the first supercomputer vendor, closed ETA and left the supercomputer d
business.

In 1986, IBM introduced the System/370 vector architecture (see Moore e
[1987]) and its first implementation in the 3090 Vector Facility. The architect
extends the System/370 architecture with 171 vector instructions. The 3090/
integrated into the 3090 CPU. Unlike most other vector processors, the 309
routes its vectors through the cache. 

The basis for modern vectorizing compiler technology and the notion of 
dependence was developed by Kuck and his colleagues [1974] at the Univ
of Illinois. Banerjee [1979] developed the test named after him. Padua and W
[1986] gave a good overview of vectorizing compiler technology.

Benchmark studies of various supercomputers, including attempts to un
stand the performance differences, have been undertaken by Lubeck, Moor
Mendez [1985], Bucher [1983], and Jordan [1987]. In Chapter 1, we discu
several benchmark suites aimed at scientific usage and often employed for 
computer benchmarking, including Linpack and the Lawrence Livermore La
ratories FORTRAN kernels. The University of Illinois coordinated the collect
of a set of benchmarks for supercomputers, called the Perfect Club. In 199
Perfect Club was integrated into SPEC, which will release a set of benchm
aimed at high-end scientific processing sometime in 1995.

In less than 20 years vector processors have gone from unproven, new 
tectures to playing a significant role in the goal to provide engineers and s
tists with ever-larger amounts of computing power. The enormous pr
performance advantages of microprocessor technology may bring this era 
end. Recently, Cray, NEC, Fujitsu, and Convex announced and delivered l
scale multiprocessors based on microprocessors. By using advanced supe
microprocessors, designers can build processors that exceed the peak p
mance of the fastest vector processors. The challenge, as we saw in Cha
lies in programming these processors. As progress is made on this front, th
of vector processors in science and engineering may continue to decrease.
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In these Exercises assume DLXV has a clock rate of 200 MHz and that Tloop = 15. Use the
start-up times from the appendix, and assume that the store latency is always inclu
the running time.

B.1 [10] <B.1,B.2> Write a DLXV vector sequence that achieves the peak MFLOPS 
formance of the processor (use the functional unit and instruction descriptio
section B.2). Assuming a 200-MHz clock rate, what is the peak MFLOPS?

B.2 [20/15/15] <B.1–B.6> Consider the following vector code run on a 200-MHz vers
of DLXV for a fixed vector length of 64:

LV V1,Ra
MULTV V2,V1,V3
ADDV V4,V1,V3
SV Rb,V2
SV Rc,V4

Ignore all strip-mining overhead, but assume that the store latency must be included
time to perform the loop. The entire sequence produces 64 results.

a. [20] <B.1–B.5> Assuming no chaining and a single memory pipeline, how m
chimes are required? How many clock cycles per result (including both stores a
result) does this vector sequence require, including start-up overhead?

b. [15] <B.1–B.5> If the vector sequence is chained, how many clock cycles per r
does this sequence require, including overhead?

c. [15] <B.1–B.6> Suppose DLXV had three memory pipelines and chaining. If th
were no bank conflicts in the accesses for the above loop, how many clock cycle
required per result for this sequence?

B.3 [20/20/15/15/20/20/20] <B.2–B.6> Consider the following FORTRAN code:

do 10 i=1,n
A(i) = A(i) + B(i)
B(i) = x * B(i)

10 continue

Use the techniques of section B.6 to estimate performance throughout this Exercise, a
ing a 200-MHz version of DLXV.

a. [20] <B.2–B.6> Write the best DLXV vector code for the inner portion of the lo
Assume x  is in F0 and the addresses of A and B are in Ra and Rb, respectively.

b. [20] <B.2–B.6> Find the total time for this loop on DLXV (T100). What is the MFLOP
rating for the loop (R100)?

c. [15] <B.2–B.6> Find R∞ for this loop.

d. [15] <B.2–B.6> Find N1/2 for this loop.

e. [20] <B.2–B.6> Find Nv for this loop. Assume the scalar code has been pipel
scheduled so that each memory reference takes six cycles and each FP operatio
three cycles. Assume the scalar overhead is also Tloop.
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f. [20] <B.2–B.6> Assume DLXV has two memory pipelines. Write vector code t
takes advantage of the second memory pipeline. Show the layout in convoys.

g. [20] <B.2–B.6> Compute T100 and R100 for DLXV with two memory pipelines.

B.4 [20/10] <B.3> Suppose we have a version of DLXV with eight memory banks (ea
double word wide) and a memory-access time of eight cycles. 

a. [20] <B.3> If a load vector of length 64 is executed with a stride of 20 double wo
how many cycles will the load take to complete?

b. [10] <B.3> What percentage of the memory bandwidth do you achieve on a
element load at stride 20 versus stride 1?

B.5 [12/12] <B.4–B.6> Consider the following loop:

C = 0.0
do 10 i=1,64

A(i) = A(i) + B(i)
C = C + A(i)

10 continue

a. [12] <B.4–B.6> Split the loop into two loops: one with no dependence and one w
dependence. Write these loops in FORTRAN—as a source-to-source transformation
This optimization is called loop fission.

b. [12] <B.4–B.6> Write the DLXV vector code for the loop without a dependence.

B.6 [20/15/20/20] <B.4–B.6> The compiled Linpack performance of the CRAY-1 (d
signed in 1976) was almost doubled by a better compiler in 1989. Let's look at a simp
ample of how this might occur. Consider the DAXPY-like loop (where k is a parameter to
the procedure containing the loop):

do 10 i=1,64
do 10 j=1,64
Y(k,j) = a * X(i,j) + Y(k,j)

10 continue

a. [20] <B.4–B.6> Write the straightforward code sequence for just the inner loop i
DLXV vector instructions.

b. [15] <B.4–B.6> Using the techniques of section B.6, estimate the performance o
code on DLXV by finding T64 in clock cycles. You may assume that Tloop of overhead
is incurred for each iteration of the outer loop. What limits the performance?

c. [20] <B.4–B.6> Rewrite the DLXV code to reduce the performance limitation; sh
the resulting inner loop in DLXV vector instructions. (Hint: Think about what estab-
lishes Tchime; can you affect it?) Find the total time for the resulting sequence.

d. [20] <B.4–B.6> Estimate the performance of your new version, using the techni
of section B.6 and finding T64.

B.7 [15/15/25] <B.5> Consider the following code. 

do 10 i=1,64
if  (B(i) .ne. 0) then  

A(i) = A(i) / B(i)
10 continue
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Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0 contains 0

a. [15] <B.5> Write the DLXV code for this loop using the vector-mask capability.

b. [15] <B.5> Write the DLXV code for this loop using scatter-gather.

c. [25] <B.5> Estimate the performance (T100 in clock cycles) of these two vector loops
assuming a divide latency of 20 cycles. Assume that all vector instructions run a
result per clock, independent of the setting of the vector-mask register. Assume
50% of the entries of B are 0. Considering hardware costs, which would you build
the above loop were typical?

B.8 [15/20/15/15] <B.1–B.6> In Fallacies and Pitfalls of Chapter 1, we saw that the dif-
ference between peak and sustained performance could be large: For one problem, 
chi S810 had a peak speed twice as high as that of the CRAY X-MP, while for another
realistic problem, the CRAY X-MP was twice as fast as the Hitachi processor. Let’s e
ine why this might occur using two versions of DLXV and the following code sequenc

C Code sequence 1
do 10 i=1,10000

A(i) = x *  A(i) + y *  A(i)
10 continue

C Code sequence 2
do 10 i=1,100

A(i) = x *  A(i)
10 continue

Assume there is a version of DLXV (call it DLXVII) that has two copies of every floatin
point functional unit with full chaining among them. Assume that both DLXV and DLXV
have two load-store units. Because of the extra functional units and the increased com
ity of assigning operations to units, all the overheads (T

loop
 and T

start
) are doubled. 

a. [15] <B.1–B.6> Find the number of clock cycles for code sequence 1 on DLXV.

b. [20] <B.1–B.6> Find the number of clock cycles on code sequence 1 for DLX
How does this compare to DLXV?

c. [15] <B.1–B.6> Find the number of clock cycles on code sequence 2 for DLXV.

d. [15] <B.1–B.6> Find the number of clock cycles on code sequence 2 for DLX
How does this compare to DLXV?

B.9 [20] <B.4> Here is a tricky piece of code with two-dimensional arrays. Does this l
have dependences? Can these loops be written so they are parallel? If so, how? Rew
source code so that it is clear that the loop can be vectorized, if possible.

do  290 j = 2,n
do  290 i = 2,j

aa(i,j)= aa(i-1,j) * aa(i-1,j)+bb(i,j)
290 continue
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B.10 [12/15] <B.4> Consider the following loop:

do  10 i = 2,n
   A(i) = B

10    C(i) = A(i-1)

a. [12] <B.4> Show there is a loop-carried dependence in this code fragment.

b. [15] <B.4> Rewrite the code in FORTRAN so that it can be vectorized as two sep
vector sequences.

B.11 [15/25] <B.4> As we saw in Chapter 4 and in section B.4, some loop structure
not easily vectorized. One common structure is a reduction—a loop that reduces an array
to a single value by repeated application of an operation. This is a special case of a
rence. A common example occurs in dot product:

dot = 0.0

do 10 i=1,64

10 dot = dot + A(i) *  B(i)

This loop has an obvious loop-carried dependence (on dot ) and cannot be vectorized in a
straightforward fashion. The first thing a good vectorizing compiler would do is split
loop to separate out the vectorizable portion and the recurrence and perhaps rewrite th
as

do  10 i=1,64

10    dot(i) = A(i) *  B(i)

do  20 i=2,64

20 dot(1) = dot(1) + dot(i) 

The variable dot  has been expanded into a vector; this transformation is called scalar ex-
pansion. We can try to vectorize the second loop either relying strictly on the compiler (
(a), or with hardware support as well, part (b)). There is an important caveat in the u
vector techniques for reduction. To make reduction work, we are relying on the assoc
ity of the operator being used for the reduction. Because of rounding and finite range,
ever, floating-point arithmetic is not strictly associative. For this reason, most comp
require the programmer to indicate whether associativity can be used to more effic
compile reductions.

a. [15] <B.4> One simple scheme for compiling the loop with the recurrence is to
sequences of progressively shorter vectors—two 32-element vectors, then tw
element vectors, and so on. This technique has been called recursive doubling. It is
faster than doing all the operations in scalar mode. Show how the FORTRAN 
would look for execution of the second loop in the code fragment above using re
sive doubling. 
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b. [25] <B.4> In some vector processors, the vector registers are addressable, and 
erands to a vector operation may be two different parts of the same vector reg
This allows another solution for the reduction, called partial sums. The key idea in
partial sums is to reduce the vector to m sums where m is the total latency through the
vector functional unit, including the operand read and write times. Assume tha
DLXV vector registers are addressable (e.g., you can initiate a vector operation
the operand V1(16), indicating that the input operand began with element 16). 
assume that the total latency for adds, including operand read and write, is eig
cles. Write a DLXV code sequence that reduces the contents of V1 to eight p
sums. It can be done with one vector operation.

B.12 [40] <B.2–B.5> Extend the DLX simulator to be a DLXV simulator, including th
ability to count clock cycles. Write some short benchmark programs in DLX and DL
assembly language. Measure the speedup on DLXV, the percentage of vectorizatio
usage of the functional units.

B.13 [50] <B.4> Modify the DLX compiler to include a dependence checker. Run so
scientific code and loops through it and measure what percentage of the statements
be vectorized. 

B.14 [Discussion] Some proponents of vector processors might argue that the vecto
cessors have provided the best path to ever-increasing amounts of processor powe
cusing their attention on boosting peak vector performance. Others would argue th
emphasis on peak performance is misplaced because an increasing percentage of 
grams are dominated by nonvector performance. (Remember Amdahl’s Law?) The p
nents would respond that programmers should work to make their programs vectori
What do you think about this argument?

B.15 [Discussion] Consider the points raised in Concluding Remarks (section B.8). This
topic—the relative advantages of pipelined scalar processors versus FP vector proces
is the source of much debate in the 1990s. What advantages do you see for each side
would you do in this situation?
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	B.1
	Why Vector Processors?
	In Chapters 3 and 4 we looked at pipelining and exploitation of instruction-level parallelism in ...
	Clock cycle time—The clock cycle time can be decreased by making the pipelines deeper, but a deep...
	Instruction fetch and decode rate—This obstacle, sometimes called the Flynn bottleneck (based on ...
	The dual limitations imposed by deeper pipelines and issuing multiple instruc�tions can be viewed...
	High-speed, pipelined processors are particularly useful for large scientific and engineering app...
	Vector processors provide high-level operations that work on vec�tors—linear arrays of numbers. A...
	Vector instructions have several important properties that solve most of the problems mentioned a...
	The computation of each result is independent of the computation of previous results, allowing a ...
	A single vector instruction specifies a great deal of work—it is equivalent to executing an entir...
	Vector instructions that access memory have a known ac�cess pattern. If the vector’s elements are...
	Because an entire loop is replaced by a vector in�struction whose behavior is predetermined, cont...
	For these reasons, vector operations can be made faster than a se�quence of scalar operations on ...
	As mentioned above, vector processors pipeline the operations on the individ�ual elements of a ve...
	B.2
	Basic Vector Architecture
	A vector processor typically consists of an ordinary pipelined scalar unit plus a vector unit. Al...
	There are two primary types of architectures for vector processors: vector- regis�ter processors ...
	We begin with a vector-register processor consisting of the pri�mary com�ponents shown in Figure ...
	FIGURE B.1� The basic structure of a vector-register architecture, DLXV. This processor has a sca...

	The primary components of the instruction set architecture of DLXV are
	Vector registers—Each vector register is a fixed-length bank holding a single vector. DLXV has ei...
	Vector functional units—Each unit is fully pipelined and can start a new operation on every clock...
	Vector load-store unit—This is a vector memory unit that loads or stores a vector to or from memo...
	A set of scalar registers—Scalar registers can also provide data as input to the vector functiona...
	Figure B.2 shows the characteristics of some typical vector processors, including the size and co...
	Processor
	Year announced
	Clock rate (MHz)
	Registers
	Elements per register (64-bit elements)
	Func�tional units
	Load-store units
	CRAY-1
	1976
	80
	8
	64
	6: add, multiply, reciprocal, �integer add, �logical, shift
	1
	CRAY X-MP CRAY Y-MP
	1983 1988
	120 166
	8
	64
	8: FP add, FP multiply, FP reciprocal, �integer add, 2 logical, shift, population count/parity
	2 loads 1 store
	CRAY-2
	1985
	166
	8
	64
	5: FP add, FP multiply, FP reciprocal/sqrt, integer (add shift, population count), logical
	1
	Fujitsu VP100/200
	1982
	133
	8–256
	32–1024
	3: FP or integer add/logical, multiply, divide
	2
	Hitachi S810/820
	1983
	71
	32
	256
	4: 2 integer add/logical, 1 multiply-add, and 1 multiply/ divide–add unit
	4
	Convex C-1
	1985
	10
	8
	128
	4: multiply, add, divide, integer/ logical
	1
	NEC SX/2
	1984
	160
	8 + 8192
	256 variable
	16: 4 integer add/logical, 4 FP multiply/divide, 4 FP add, 4 shift
	8
	DLXV
	1990
	200
	8
	64
	5: multiply, divide, add, integer add, logical
	1
	Cray C-90
	1991
	240
	8
	128
	8: FP add, FP multiply, FP reciprocal, �integer add, 2 logical, shift, population count/parity
	4
	Convex C-4
	1994
	135
	16
	128
	3: each is full integer, logical, and FP (including multiply-add)
	NEC SX/4
	1995
	400
	8 + 8192
	256 variable
	16: 4 integer add/logical, 4 FP multiply/divide, 4 FP add, 4 shift
	8
	Cray J-90
	1995
	100
	8
	64
	4: FP add, FP multiply, FP reciprocal, integer/logical
	Cray T-90
	1996
	~500
	8
	128
	8: FP add, FP multiply, FP reciprocal, �integer add, 2 logical, shift, population count/parity
	4
	FIGURE B.2� Characteristics of several vector-register architectures. The vector functional units...

	In DLXV, vector operations use the same names as DLX operations, but with the letter “V” appended...
	Instruction
	Operands
	Function
	ADDV
	ADDSV
	V1,V2,V3
	V1,F0,V2
	Add elements of V2 and V3, then put each result in V1.
	Add F0 to each element of V2, then put each result in V1.
	SUBV
	SUBVS
	SUBSV
	V1,V2,V3
	V1,V2,F0
	V1,F0,V2
	Subtract elements of V3 from V2, then put each result in V1.
	Subtract F0 from elements of V2, then put each result in V1.
	Subtract elements of V2 from F0, then put each result in V1.
	MULTV
	MULTSV
	V1,V2,V3
	V1,F0,V2
	Multiply elements of V2 and V3, then put each result in V1.
	Multiply F0 by each element of V2, then put each result in V1.
	DIVV
	DIVVS
	DIVSV
	V1,V2,V3
	V1,V2,F0
	V1,F0,V2
	Divide elements of V2 by V3, then put each result in V1.
	Divide elements of V2 by F0, then put each result in V1.
	Divide F0 by elements of V2, then put each result in V1.
	LV
	V1,R1
	Load vector register V1 from memory starting at address R1.
	SV
	R1,V1
	Store vector register V1 into memory starting at address R1.
	LVWS
	V1,(R1,R2)
	Load V1 from address at R1 with stride in R2, i.e., R1+i ¥ R2.
	SVWS
	(R1,R2),V1
	Store V1 from address at R1 with stride in R2, i.e., R1+i ¥ R2.
	LVI
	V1,(R1+V2)
	Load V1 with vector whose elements are at R1+V2(i), i.e., V2 is an index.
	SVI
	(R1+V2),V1
	Store V1 to vector whose elements are at R1+V2(i), i.e., V2 is an index.
	CVI
	V1,R1
	Create an index vector by storing the values 0, 1 ¥ R1, 2 ¥ R1,...,63 ¥ R1 into V1.
	S--V
	S--SV
	V1,V2
	F0,V1
	Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put a 1 in the ...
	POP
	R1,VM
	Count the 1s in the vector-mask register and store count in R1.
	CVM
	Set the vector-mask register to all 1s.
	MOVI2S
	MOVS2I
	VLR,R1
	R1,VLR
	Move contents of R1 to the vector-length register.
	Move the contents of the vector-length register to R1.
	MOVF2S
	MOVS2F
	VM,F0
	F0,VM
	Move contents of F0 to the vector-mask register.
	Move contents of vector-mask register to F0.
	FIGURE B.3� The DLXV vector instructions. Only the double-precision FP operations are shown. In a...

	A vector processor is best understood by looking at a vector loop on DLXV. Let’s take a typical v...
	Y = a ¥ X + Y
	X and Y are vectors, initially resident in memory, and a is a scalar. This is the so- called SAXP...
	For now, let us assume that the number of elements, or length, of a vec�tor register (64) matches...
	EXAMPLE Show the code for DLX and DLXV for the DAXPY loop. Assume that the start�ing addresses of...

	ANSWER Here is the DLX code.
	LD F0,a ADDI R4,Rx,#512 ;last address to load Loop: LD F2,0(Rx) ;load X(i) MULTD F2,F0,F2 ;a ¥ X(...
	Here is the code for DLXV for DAXPY.
	LD F0,a ;load scalar a LV V1,Rx ;load vector X MULTSV V2,F0,V1 ;vector-scalar multiply LV V3,Ry ;...
	There are some interesting comparisons between the two code segments in this Example. The most dr...
	Another impor�tant difference is the frequency of pipeline interlocks. In the straightforward DLX...
	Vector Execution Time

	The execution time of a sequence of vector operations primarily depends on three factors: the len...
	To simplify the discussion of vector execution and its timing, we will use the notion of a convoy...
	Accompanying the notion of a convoy is a timing metric, called a chime, that can be used for esti...
	If we know the number of convoys in a vector sequence, we know the execution time in chimes. One ...
	EXAMPLE Show how the following code sequence lays out in convoys, assuming a single copy of each ...

	LV V1,Rx ;load vector X MULTSV V2,F0,V1 ;vector-scalar multiply LV V3,Ry ;load vector Y ADDV V4,V...
	How many chimes will this vector sequence take? How many chimes per FLOP (floating-point operatio...
	ANSWER The first convoy is occupied by the first LV instruction. The MULTSV is dependent on the f...
	1. LV
	2. MULTSV ��LV
	3. ADDV
	4. SV
	The sequence requires four convoys and hence takes four chimes. Note that although we allow the M...
	The chime approximation is reasonably accurate for long vectors. For example, for 64-element vect...
	Another source of overhead is far more significant than the issue limitation. The most important ...
	EXAMPLE Assume the start-up overhead for functional units is shown in Figure B.4.

	Unit
	Start-up overhead
	Load and store unit
	12 cycles
	Multiply unit
	7 cycles
	Add unit
	6 cycles
	FIGURE B.4� Start-up overhead.

	Show the time that each convoy can begin and the total number of cycles needed. How does the time...
	ANSWER Figure B.5 provides the answer in convoys, assuming that the vector length is n:
	Convoy
	Starting time
	First-result time
	Last-result time
	1. LV
	0
	12
	11 + n
	2. MULTSV LV
	12 + n
	12 + n + 12
	23 + 2n
	3. ADDV
	24 + 2n
	24 + 2n + 6
	29 + 3n
	4. SV
	30 + 3n
	30 + 3n + 12
	41 + 4n
	FIGURE B.5� Starting times and first- and last-result times for convoys 1 through 4. The vector l...

	One tricky question is when we assume the vector sequence is done; this determines whether the st...
	The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock cycles, while the chime...
	For simplicity, we will use the chime approximation for running time, incorporating start-up time...
	Start-up time for an instruction comes from the pipeline depth for the functional unit implementi...
	For example, if an opera�tion takes 10 clock cycles, it must be pipelined 10 deep to achieve an i...
	For DLXV, we will use the same pipeline depths as the CRAY-1, though more modern processors might...
	Operation
	Start-up penalty
	Vector add
	6
	Vector multiply
	7
	Vector divide
	20
	Vector load
	12
	FIGURE B.6� Start-up penalties on DLXV. These are the start-up penalties in clock cycles for DLXV...
	Vector Load-Store Units and Vector Memory Systems

	The behavior of the load-store vector unit is significantly more complicated than that of the ari...
	Typically, penalties for start-ups on load-store units are higher than those for arithmetic funct...
	To maintain an initiation rate of one word fetched or stored per clock, the memory system must be...
	Most vector processors use memory banks rather than simple interleaving for two primary reasons:
	1. Many vector computers support multiple loads or stores per clock. To support multiple simultan...
	2. As we will see in the next section, many vector processors support the ability to load or stor...

	In Chapter 5 we saw that the desired access rate and the bank access time determined how many ban...
	EXAMPLE Suppose we want to fetch a vector of 64 elements starting at byte ad�dress 136, and a mem...

	ANSWER Six clocks per access require at least six banks, but because we want the number of banks ...
	Beginning
	Bank
	at clock no.
	0
	1
	2
	3
	4
	5
	6
	7
	0
	192
	136
	144
	152
	160
	168
	176
	184
	6
	256
	200
	208
	216
	224
	232
	240
	248
	14
	320
	264
	272
	280
	288
	296
	304
	312
	22
	384
	328
	336
	344
	352
	360
	368
	376
	FIGURE B.7� Memory addresses (in bytes) by bank number and time slot at which access begins. The ...

	  Figure�B.8 shows the timing for the first few sets of accesses for an eight-bank system with a ...
	FIGURE B.8� Access timing for the first 64 double-precision words of the load. After the six-cloc...

	The number of banks in the memory system and the pipeline depth in the functional units are essen...
	B.3
	Two Real-World Issues: Vector Length and Stride
	This section deals with two issues that arise in real programs: What do you do when the vector le...
	Vector-Length Control

	A vector-register processor has a natural vector length determined by the number of elements in e...
	do 10 i = 1,n 10 Y(i) = a * X(i) + Y(i)
	The size of all the vector operations depends on n, which may not even be known until runtime! Th...
	The solution to these problems is to create a vector-length register (VLR). The VLR controls the ...
	What if the value of n is not known at compile time, and thus may be greater than MVL? To tackle ...
	low = 1 VL = (n mod MVL) /*find the odd size piece*/ do 1 j = 0,(n / MVL) /*outer loop*/ do 10 i ...
	The term n/MVL represents truncating integer divi�sion (which is what Fortran does) and is used t...
	FIGURE B.9� A vector of arbitrary length processed with strip mining. All blocks but the first ar...

	The inner loop of the code above is vectorizable with length VL, which is equal to either (n mod ...
	In addition to the start-up overhead, we need to account for the overhead of executing the strip-...
	There are two key factors that contribute to the running time of a strip-mined loop consisting of...
	1. The number of convoys in the loop, which determines the number of chimes. We use the notation ...
	2. The overhead for each strip-mined sequence of convoys. This over�head consists of the cost of ...

	There may also be a fixed overhead associated with setting up the vector sequence the first time....
	The components can be used to state the total running time for a vector sequence operating on a v...
	The values of Tstart, Tloop, and Tchime are compiler and processor dependent. The register alloca...
	For simplicity, we will use a constant value for Tloop on DLXV. Based on a variety of measurement...
	EXAMPLE What is the execution time on DLXV for the vector operation A = B ¥ s, where s is a scala...

	ANSWER Assume the addresses of A and B are initially in Ra and Rb, s is in Fs, and recall that fo...
	ADDI R2,R0,#1600 ;total # bytes in vector ADD R2,R2,Ra ;address of the end of A vector ADDI R1,R0...
	The three vector instructions in the loop are dependent and must go into three convoys, hence Tch...
	The value of Tstart is the sum of
	The vector load start-up of 12 clock cycles
	A seven-clock-cycle start-up for the multiply
	A 12-clock-cycle start-up for the store.
	Thus, the value of Tstart is given by
	So, the overall value becomes
	The execution time per element with all start-up costs is then 784/200 = 3.9, compared with a chi...
	Figure�B.10 shows the overhead and effective rates per element for the above example (A = B ¥ s) ...
	The next few sections introduce enhancements that reduce this time. We will see how to reduce the...
	FIGURE B.10� This shows the total execution time per element and the total over�head time per ele...
	Vector Stride

	The second problem this section addresses is that the position in memory of adjacent elements in ...
	do 10 i = 1,100 do 10 j = 1,100 A(i,j) = 0.0 do 10 k = 1,100 10 A(i,j) = A(i,j)+B(i,k)*C(k,j)
	At the statement labeled 10 we could vectorize the multiplication of each row of B with each colu...
	To do so, we must consider how adjacent elements in B and adjacent ele�ments in C are addressed. ...
	This distance separating elements that are to be gathered into a single register is called the st...
	Once a vector is loaded into a vector register it acts as if it had logically adja�cent elements....
	On DLXV, where the addressable unit is a byte, the stride for our example would be 800. The value...
	Complications in the memory system can occur from supporting strides greater than one. In Chapter...
	EXAMPLE Suppose we have 16 memory banks with a read latency of 12 clocks. How long will it take t...

	ANSWER Since the number of banks is larger than the read latency, for a stride of 1, the load wil...
	Memory bank conflicts will not occur if the stride and number of banks are relatively prime with ...
	B.4
	Effectiveness of Compiler Vectorization
	Two factors affect the success with which a program can be run in vector mode. The first factor i...
	As an indication of the level of vectorization that can be achieved in scientific programs, let's...
	Benchmark name
	FP operations
	FP operations executed in vector mode
	ADM
	23%
	68%
	DYFESM
	26%
	95%
	FLO52
	41%
	100%
	MDG
	28%
	27%
	MG3D
	31%
	86%
	OCEAN
	28%
	58%
	QCD
	14%
	1%
	SPICE
	16%
	7%
	TRACK
	9%
	23%
	TRFD
	22%
	10%
	FIGURE B.11� Level of vectorization among the Perfect Club benchmarks when executed on the CRAY X...

	There is also tremendous variation in how well compilers do in vectorizing programs. As a summary...
	Processor
	Compiler
	Completely vectorized
	Partially vectorized
	Not vectorized
	CDC Cyber-205
	VAST-2 V2.21
	62
	5
	33
	Convex C-series
	FC5.0
	69
	5
	26
	CRAY X-MP
	CFT77 V3.0
	69
	3
	28
	CRAY X-MP
	CFT V1.15
	50
	1
	49
	CRAY-2
	CFT2 V3.1a
	27
	1
	72
	ETA-10
	FTN 77 V1.0
	62
	7
	31
	Hitachi S810/820
	FORT77/HAP V20-2B
	67
	4
	29
	IBM 3090/VF
	VS Fortran V2.4
	52
	4
	44
	NEC SX/2
	FORTRAN77 / SX V.040
	66
	5
	29
	FIGURE B.12� Result of applying vectorizing compilers to the 100 Fortran test kernels. For each p...

	B.5
	Enhancing Vector Performance
	Three techniques for improving the per�formance of vector processors are discussed in this sectio...
	Chaining—The Concept of Forwarding Extended to Vector Registers

	Consider the simple vector sequence
	MULTV V1,V2,V3 ADDV V4,V1,V5
	In DLXV, as it currently stands, these two instructions must be put into two separate convoys, si...
	Even though a pair of operations depend on one another, chaining allows the opera�tions to procee...
	Figure�B.13 shows the timing of a chained and an unchained version of the above pair of vector in...
	FIGURE B.13� Timings for a sequence of dependent vector operations ADDV and MULTV, both unchained...

	Although chaining allows us to reduce the chime component of the execution time by putting two de...
	We will see in section�B.6 that chaining plays a major role in boosting vector performance. In fa...
	Conditionally Executed Statements

	In the last section, we saw that many programs only achieved low to moderate levels of vectorizat...
	Consider the following loop:
	do 100 i = 1, 64 if (A(i).ne. 0) then A(i) = A(i) – B(i) endif 100 continue
	This loop cannot normally be vectorized because of the condi�tional execution of the body; howeve...
	The extension that is commonly used for this capability is vector-mask �control. The vector-mask ...
	LV V1,Ra ;load vector A into V1 LV V2,Rb ;load vector B LD F0,#0 ;load FP zero into F0 SNESV F0,V...
	Most recent vector processors provide vector-mask control. The vector-mask capability described h...
	Using a vector-mask register does, however, have disadvan�tages. When we examined conditionally e...
	Second, in some vector processors the vector mask serves only to disable the storing of the resul...
	Sparse Matrices

	There are techniques for allowing programs with sparse matrices to execute in vector mode. In a s...
	do 100 i = 1,n 100 A(K(i)) = A(K(i)) + C(M(i))
	This code implements a sparse vector sum on the arrays A and C, using index vectors K and M to de...
	A primary mechanism for supporting sparse matrices is scatter-gather operations �using index vect...
	LV Vk,Rk ;load K LVI Va,(Ra+Vk) ;load A(K(I)) LV Vm,Rm ;load M LVI Vc,(Rc+Vm) ;load C(M(I)) ADDV ...
	This technique allows code with sparse matrices to be run in vector mode. The source code above w...
	A scatter-gather capability is included on many of the recent supercomputers. Such operations rar...
	The indexed loads-stores and the CVI instruction provide an alternative method to support conditi...
	LV V1,Ra ;load vector A into V1 LD F0,#0 ;load FP zero into F0 SNESV F0,V1 ;sets the VM to 1 if V...
	Whether the implementation using scatter-gather is better than the condition�ally executed versio...
	We want Time1 ³ Time2, so
	That is, the second method is faster if less than one-quarter of the elements are nonzero. In man...
	B.6
	Putting It All Together: Performance of Vector Processors
	In this section we look at different measures of performance for vector processors and what they ...
	In this section we examine the performance of DLXV on our DAXPY loop by looking at performance fr...
	Measures of Vector Performance

	Because vector length is so important in establishing the perfor�mance of a processor, length-rel...
	r°—The MFLOPS rate on an infinite-length vector. Although this measure may be of interest� when e...
	n1/2—The vector length needed to reach one-half of r°. This is a good measure of the impact of ov...
	nv—The vector length needed to make vector mode faster than scalar mode. This measures both overh...
	Let’s look at these measures for our DAXPY problem running on DLXV. When chained, the inner loop ...
	LV V1,Rx
	MULTSV V2,F0,V1
	Convoy 1: chained load and multiply
	LV V3,Ry
	ADDV V4,V2,V3
	Convoy 2: second load and ADD, chained
	SV Ry,V4
	Convoy 3: store the result
	FIGURE B.14� The chained inner loop of the DAXPY code in convoys.

	Recall our performance equation for the execution time of a vector loop with n elements, Tn:
	Chaining allows the loop to run in three chimes (and no less, since there is one memory pipeline)...
	The Peak Performance of DLXV on DAXPY

	First, we should determine what the peak performance, r°, really is, since we know it must differ...
	Using MVL = 64, Tloop = 15, Tstart= 49, and Tchime = 3 in the performance equation, and assuming ...
	The sustained rate is actually over 4 clock cycles per iteration, rather than the theoretical rat...
	We can now compute r° for a 200-MHz clock as
	The numerator is independent of n, hence
	The performance without the start-up overhead, which is the peak performance given the vector fun...
	Sustained Performance of DLXV on the Linpack Benchmark

	The Linpack benchmark is a Gaussian elimination on a 100 ¥ 100 matrix. Thus, the vector element l...
	Now we can obtain an accurate estimate of the performance of DAXPY using a vector length of 66.
	The peak number, ignoring start-up overhead, is 1.64 times higher than this estimate of sustained...
	Since vector length has a significant impact on performance, the n1/2 and nv measures are often u...
	EXAMPLE What is n1/2 for just the inner loop of DAXPY for DLXV with a 200-MHz clock?

	ANSWER Using r° as the peak rate, we want to know the vector length that will achieve about 50 MF...
	Simplifying this and then assuming N1/2 ² 64, so that , yields
	So n1/2 = 13; that is, a vector of length 13 gives approximately one-half the peak performance fo...
	EXAMPLE What is the vector length, nv, such that the vector operation runs faster than the scalar?

	ANSWER Again, we know that nv < 64. The time to do one iteration in scalar mode can be estimated ...
	For the DAXPY loop, vector mode is faster than scalar as long as the vector has at least two elem...
	DAXPY Performance on an Enhanced DLXV

	DAXPY, like many vector problems, is memory limited. Consequently, per�formance could be improved...
	EXAMPLE What would be the value of T66 for DAXPY on DLXV if we added two more memory pipelines?

	ANSWER With three memory pipelines all the instructions fit in one convoy and take one chime. The...
	With three memory pipelines, we have reduced the clock-cycle count for sus�tained performance fro...
	Another improvement could come from allowing different convoys to overlap and also allowing the s...
	To achieve the maximum hiding of strip-mining overhead, we need to be able to overlap strip-mined...
	EXAMPLE What would be the values of r° and T66 for DAXPY on DLXV if we added two more memory pipe...

	ANSWER
	Since the overhead is only seen once, Tn = n + 49 + 15 = n + 64. Thus,
	Adding the extra memory pipelines and more flexible issue logic yields an improvement in peak per...
	In summary, we have examined several measures of vector performance. Theoretical peak performance...
	By including the loop overhead, we can calculate values for peak performance for an infinite-leng...
	Using these measures we also can find N1/2 and Nv, which give us another way of looking at the st...
	B.7
	Fallacies and Pitfalls
	Early vector processors such as the TI ASC and the CDC STAR-100 had long start-up times. For some...
	This was a problem on many early vector processors, and a place where Seymour Cray rewrote the ru...
	Processor
	Minimum rate for any loop
	Maximum rate for any loop
	Harmonic mean of all 24 loops
	MIPS M/120-5
	0.80 MFLOPS
	3.89 MFLOPS
	1.85 MFLOPS
	Stardent-1500
	0.41 MFLOPS
	10.08 MFLOPS
	1.72 MFLOPS
	FIGURE B.15� Performance measurements for the Livermore FORTRAN kernels on two different processo...

	As we saw with the DAXPY loop, memory bandwidth is quite impor�tant. DAXPY requires 1.5 memory re...
	B.8
	Concluding Remarks
	In the late 1980s rapid performance increases in efficiently pipelined scalar �processors led to ...
	For scientific programs, an interesting counterpart to CPI is clock cycles per FLOP, or CPF. We s...
	In addition to the use of vectors rather than multiple issue, the other major distinction between...
	Recent trends in vector processor design have focused on high peak-vector performance and multipr...
	In 1994, we saw two dramatic demonstrations that the gap between vector processors and superscala...
	B.9
	Historical Perspective and References
	The first vector processors were the CDC STAR-100 (see Hintz and Tate [1972]) and the TI ASC (see...
	Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Research and introduced the CRAY-1...
	In 1981, CDC started shipping the CYBER-205 (see Lincoln [1982]). The 205 had the same basic arch...
	The CDC STAR processor and its descendant, the CYBER-205, were �memory-�memory vector processors....
	In 1983, Cray Research shipped the first CRAY X-MP (see Chen [1983]). With an improved clock rate...
	The 1980s also saw the arrival of smaller-scale vector processors, called mini- supercomputers. P...
	In 1983, processor vendors from Japan entered the supercomputer market�place, starting with the F...
	In 1988, Cray Research introduced the CRAY Y-MP—a bigger and faster version of the X-MP. The Y-MP...
	Cray Research focused on the C90, a new high-end processor with up to 16 processors and a clock r...
	In the early 1980s, CDC spun out a group, called ETA, to build a new supercomputer, the ETA-10, c...
	In 1986, IBM introduced the System/370 vector architecture (see Moore et al. [1987]) and its firs...
	The basis for modern vectorizing compiler technology and the notion of data dependence was develo...
	Benchmark studies of various supercomputers, including attempts to under�stand the performance di...
	In less than 20 years vector processors have gone from un�proven, new architectures to playing a ...
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	Exercises

	In these Exercises assume DLXV has a clock rate of 200 MHz and that Tloop = 15. Use the start-up ...
	B.1� [10] <B.1,B.2> Write a DLXV vector sequence that achieves the peak MFLOPS performance of the...
	B.2� [20/15/15] <B.1–B.6> Consider the following vector code run on a 200-MHz version of DLXV for...

	LV V1,Ra MULTV V2,V1,V3 ADDV V4,V1,V3 SV Rb,V2 SV Rc,V4
	Ignore all strip-mining overhead, but assume that the store latency must be included in the time ...
	a. [20] <B.1–B.5> Assuming no chaining and a single memory pipeline, how many chimes are required...
	b. [15] <B.1–B.5> If the vector sequence is chained, how many clock cycles per result does this s...
	c. [15] <B.1–B.6> Suppose DLXV had three memory pipelines and chaining. If there were no bank con...
	B.3� [20/20/15/15/20/20/20] <B.2–B.6> Consider the following Fortran code:

	do 10 i=1,n A(i) = A(i) + B(i) B(i) = x * B(i) 10 continue
	Use the techniques of section�B.6 to estimate performance throughout this Exercise, assuming a 20...
	a. [20] <B.2–B.6> Write the best DLXV vector code for the inner portion of the loop. Assume x is ...
	b. [20] <B.2–B.6> Find the total time for this loop on DLXV (T100). What is the MFLOP rating for ...
	c. [15] <B.2–B.6> Find r° for this loop.
	d. [15] <B.2–B.6> Find N1/2 for this loop.
	e. [20] <B.2–B.6> Find Nv for this loop. Assume the scalar code has been pipeline scheduled so th...
	f. [20] <B.2–B.6> Assume DLXV has two memory pipelines. Write vector code that takes advan�tage o...
	g. [20] <B.2–B.6> Compute T100 and r100 for DLXV with two memory pipelines.
	B.4� [20/10] <B.3> Suppose we have a version of DLXV with eight memory banks (each a double word ...
	a. [20] <B.3> If a load vector of length 64 is executed with a stride of 20 double words, how man...
	b. [10] <B.3> What percentage of the memory bandwidth do you achieve on a 64- �element load at st...

	B.5� [12/12] <B.4–B.6> Consider the following loop:

	C = 0.0 do 10 i=1,64 A(i) = A(i) + B(i) C = C + A(i) 10 continue
	a. [12] <B.4–B.6> Split the loop into two loops: one with no dependence and one with a depen�denc...
	b. [12] <B.4–B.6> Write the DLXV vector code for the loop without a dependence.
	B.6� [20/15/20/20] <B.4–B.6> The compiled Linpack performance of the CRAY-1 (designed in 1976) wa...

	do 10 i=1,64 do 10 j=1,64 Y(k,j) = a*X(i,j) + Y(k,j) 10 continue
	a. [20] <B.4–B.6> Write the straightforward code sequence for just the inner loop in DLXV vec�tor...
	b. [15] <B.4–B.6> Using the techniques of section�B.6, estimate the performance of this code on D...
	c. [20] <B.4–B.6> Rewrite the DLXV code to reduce the performance limitation; show the resulting ...
	d. [20] <B.4–B.6> Estimate the performance of your new version, using the techniques of section�B...
	B.7� [15/15/25] <B.5> Consider the following code.

	do 10 i=1,64 if (B(i) .ne. 0) then A(i) = A(i) / B(i) 10 continue
	Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0 contains 0.
	a. [15] <B.5> Write the DLXV code for this loop using the vector-mask capability.
	b. [15] <B.5> Write the DLXV code for this loop using scatter-gather.
	c. [25] <B.5> Estimate the performance (T100 in clock cycles) of these two vector loops, assum�in...
	B.8� [15/20/15/15] <B.1–B.6> In Fallacies and Pitfalls of Chapter�1, we saw that the dif�ference ...

	C Code sequence 1 do 10 i=1,10000 A(i) = x * A(i) + y * A(i) 10 continue
	C Code sequence 2 do 10 i=1,100 A(i) = x * A(i) 10� continue
	Assume there is a version of DLXV (call it DLXVII) that has two copies of every floating- point f...
	a. [15] <B.1–B.6> Find the number of clock cycles for code sequence 1 on DLXV.
	b. [20] <B.1–B.6> Find the number of clock cycles on code sequence 1 for DLXVII. How does this co...
	c. [15] <B.1–B.6> Find the number of clock cycles on code sequence 2 for DLXV.
	d. [15] <B.1–B.6> Find the number of clock cycles on code sequence 2 for DLXVII. How does this co...
	B.9� [20] <B.4> Here is a tricky piece of code with two-dimensional arrays. Does this loop have d...

	do 290 j = 2,n do 290 i = 2,j aa(i,j)= aa(i-1,j)*aa(i-1,j)+bb(i,j) 290 continue
	B.10� [12/15] <B.4> Consider the following loop:

	do 10 i = 2,n A(i) = B 10 C(i) = A(i-1)
	a. [12] <B.4> Show there is a loop-carried dependence in this code fragment.
	b. [15] <B.4> Rewrite the code in FORTRAN so that it can be vectorized as two separate vector �se...
	B.11� [15/25] <B.4> As we saw in Chapter 4 and in section�B.4, some loop structures are not easil...

	dot = 0.0 do 10 i=1,64 10 dot = dot + A(i) * B(i)
	This loop has an obvious loop-carried dependence (on dot) and cannot be vec�torized in a straight...
	do 10 i=1,64 10 dot(i) = A(i) * B(i) do 20 i=2,64 20 dot(1) = dot(1) + dot(i)
	The variable dot has been expanded into a vector; this transformation is called scalar expansion....
	a. [15] <B.4> One simple scheme for compiling the loop with the recurrence is to add sequences of...
	b. [25] <B.4> In some vector processors, the vector registers are addressable, and the operands t...
	B.12� [40] <B.2–B.5> Extend the DLX simulator to be a DLXV simulator, including the ability to co...
	B.13� [50] <B.4> Modify the DLX compiler to include a dependence checker. Run some scientific cod...
	B.14� [Discussion] Some proponents of vector processors might argue that the vector pro�cessors h...
	B.15� [Discussion] Consider the points raised in Concluding Remarks (section�B.8). This topic—the...


