Vector Processors

I'm certainly not inventing vector processors. There are three

kinds that | know of existing today. They are represented by the
lliac-1V, the (CDC) Star processor, and the Tl (ASC) processor.
Those three were all pioneering processors.... One of the problems
of being a pioneer is you always make mistakes and | never, never
want to be a pioneer. Itsalways best to come second when you can
look at the mistakes the pioneers made.

Seymour Cray
Public Lecture at Lawrence Livermore Laboratories
on the Introduction of the CRAY(1976)

B.1 Why Vector Processors? B-1

B.2 Basic Vector Architecture B-3
B.3 Two Real-World Issues: Vector Length and Stride B-15
B.4 Effectiveness of Compiler Vectorization B-22
B.5 Enhancing Vector Performance B-23
B.6 Putting It All Together: Performance of Vector Processors B-29
B.7 Fallacies and Pitfalls B-35
B.8 Concluding Remarks B-37
B.9 Historical Perspective and References B-38

Exercises B-43

B . 1 | Why Vector Processors?

In Chapters 3 and 4 we looked at pipelining and exploitation of instruction-level
parallelism in detail and saw that pipeline scheduling, issuing multiple instruc-
tions per clock cycle, and more deeply pipelining a processor could significantly
improve the performance of a processor. (This appendix assumes that you have
read Chapter 3 completely and at least skimmed Chapter 4; in addition, the dis-
cussion on vector memory systems assumes that you have read Chapter 5.) Ye
there are limits on the performance improvement that pipelining can achieve.
These limits are set by two primary factors:

« Clock cycle time-The clock cycle time can be decreased by making the pipe-
lines deeper, but a deeper pipeline will increase the pipeline dependences anc
result in a higher CPI. At some point, each increase in pipeline depth has a cor-
responding increase in CPIl. As we saw in ChapteF8lkcies and Pitfalls,
very deep pipelining can slow down a processor.

« Instruction fetch and decode rateThis obstacle, sometimes called fHgnn
bottleneck(based on Flynn [1966]), makes it difficult to fetch and issue many

B-2

Appendix B Vector Processors

instructions per clock. This obstacle is one reason that it has been difficult to
build processors with high clock rates and very high issue rates.

The dual limitations imposed by deeper pipelines and issuing multiple instruc-
tions can be viewed from the standpoint of either clock rate or CPI: It is just as
difficult to schedule a pipeline thatngimes deeper as it is to schedule a proces-
sor that issues instructions per clock cycle.

High-speed, pipelined processors are particularly useful for large scientific
and engineering applications. A high-speed pipelined processor will usually use a
cache to avoid forcing memory reference instructions to have very long latency.
Unfortunately, big, long-running, scientific programs often have very large active
data sets that are sometimes accessed with low locality, yielding poor perfor-
mance from the memory hierarchy. This problem could be overcome by not cach-
ing these structures if it were possible to determine the memory-access patterns
and pipeline the memory accesses efficiently. Novel cache architectures and com-
piler assistance through blocking and prefetching are decreasing these memory
hierarchy problems, but they continue to be serious in some applications.

Vector processorprovide high-level operations that work wactors-inear
arrays of numbers. A typical vector operation might add two 64-element, floating-
point vectors to obtain a single 64-element vector result. The vector instruction is
equivalent to an entire loop, with each iteration computing one of the 64 elements
of the result, updating the indices, and branching back to the beginning.

Vector instructions have several important properties that solve most of the
problems mentioned above:

« The computation of each result is independent of the computation of previous
results, allowing a very deep pipeliwghoutgenerating any data hazards. Es-
sentially, the absence of data hazards was determined by the compiler or by the
programmer when she decided that a vector instruction could be used.

« Asingle vector instruction specifies a great deal of work—it is equivalent to ex-
ecuting an entire loop. Thus, the instruction bandwidth requirement is reduced,
and the Flynn bottleneck is considerably mitigated.

« Vector instructions that access memory have a known access pattern. If the vec-
tor's elements are all adjacent, then fetching the vector from a set of heavily in-
terleaved memory banks works very well (as we saw in section 5.6). The high
latency of initiating a main memory access versus accessing a cache is amor-
tized, because a single access is initiated for the entire vector rather than to a
single word. Thus, the cost of the latency to main memory is seen only once for
the entire vector, rather than once for each word of the vector.

« Because an entire loop is replaced by a vector instruction whose behavior is
predetermined, control hazards that would normally arise from the loop branch
are nonexistent.

B.2 Basic Vector Architecture B-3

For these reasons, vector operations can be made faster than a sequence of scal
operations on the same number of data items, and designers are motivated to in
clude vector units if the applications domain can use them frequently.

As mentioned above, vector processors pipeline the operations on the individ-
ual elements of a vector. The pipeline includes not only the arithmetic operations
(multiplication, addition, and so on), but also memory accesses and effective ad-
dress calculations. In addition, most high-end vector processors allow multiple
vector operations to be done at the same time, creating parallelism among the op-
erations on different elements. In this appendix, we focus on vector processors
that gain performance by pipelining and instruction overlap.

B . 2 | Basic Vector Architecture

A vector processor typically consists of an ordinary pipelined scalar unit plus a
vector unit. All functional units within the vector unit have a latency of several
clock cycles. This allows a shorter clock cycle time and is compatible with long-
running vector operations that can be deeply pipelined without generating haz-
ards. Most vector processors allow the vectors to be dealt with as floating-point
numbers, as integers, or as logical data. Here we will focus on floating point. The
scalar unit is basically no different from the type of advanced pipelined CPU dis-
cussed in Chapter 3.

There are two primary types of architectures for vector processsgr-
register processorand memory-memory vector processoirs a vector-register
processor, all vector operations—except load and store—are among the vector
registers. These architectures are the vector counterpart of a load-store architec:
ture. All major vector computers shipped since the late 1980s use a vector-register
architecture; these include the Cray Research processors (CRAY-1, CRAY-2, X-
MP, Y-MP, and C-90), the Japanese supercomputers (NEC SX/2 and SX/3, Fujitsu
VP200 and VP400, and the Hitachi S820), as well as the mini-supercomputers
(Convex C-1 and C-2). In a memory-memory vector processor, all vector opera-
tions are memory to memory. The first vector computers were of this type, as were
CDC's vector computers. From this point on we will focus on vector-register ar-
chitectures only; we will briefly return to memory-memory vector architectures at
the end of the appendix (section B.7) to discuss why they have not been as suc-
cessful as vector-register architectures.

We begin with a vector-register processor consisting of the primary com-
ponents shown in Figure B.1. This processor, which is loosely based on the
CRAY-1, is the foundation for discussion throughout most of this appendix. We
will call it DLXYV; its integer portion is DLX, and its vector portion is the logical
vector extension of DLX. The rest of this section examines how the basic archi-
tecture of DLXV relates to other processors.

Appendix B Vector Processors

Main memory

Vector FP add/subtract
load-store -
FP multiply
FP divide
——
>
registers g
>
Scalar
registers

FIGURE B.1 The basic structure of a vector-register architecture, DLXV. This proces-
sor has a scalar architecture just like DLX. There are also eight 64-element vector registers,
and all the functional units are vector functional units. Special vector instructions are defined
both for arithmetic and for memory accesses. We show vector units for logical and integer
operations. These are included so that DLXV looks like a standard vector processor, which
usually includes these units. However, we will not be discussing these units except in the
Exercises. The vector and scalar registers have a significant number of read and write ports
to allow multiple simultaneous vector operations. These ports are connected to the inputs and
outputs of the vector functional units by a set of crossbars (shown in thick gray lines). In
section B.5 we add chaining, which will require additional interconnect capability.

The primary components of the instruction set architecture of DLXV are

« Vector registers-Each vector register is a fixed-length bank holding a single
vector. DLXV has eight vector registers, and each vector register holds 64 el-
ements. Each vector register must have at least two read ports and one write
port in DLXV. This will allow a high degree of overlap among vector opera-
tions to different vector registers. (We do not consider the problem of a short-
age of vector register ports. In real machines this would result in a structural
hazard.) The read and write ports, which total at least 16 read ports and eight
write ports, are connected to the functional unit inputs or outputs by a pair of
crossbars. (The CRAY-1 manages to implement the register file with only a
single port per register using some clever implementation technigues.)

B.2 Basic Vector Architecture B-5

« Vector functional units-Each unit is fully pipelined and can start a new oper-
ation on every clock cycle. A control unit is needed to detect hazards, both from
conflicts for the functional units (structural hazards) and from conflicts for reg-
ister accesses (data hazards). DLXV has five functional units, as shown in
Figure B.1. For simplicity, we will focus exclusively on the floating-point func-
tional units. Depending on the vector processor, scalar operations either use the
vector functional units or use a dedicated set. We assume the functional units
are shared, but again, for simplicity, we ignore potential conflicts.

« Vector load-store unit-This is a vector memory unit that loads or stores a vec-
tor to or from memory. The DLXV vector loads and stores are fully pipelined,
so that words can be moved between the vector registers and memory with a
bandwidth of one word per clock cycle, after an initial latency. This unit would
also normally handle scalar loads and stores.

« A set of scalar registersScalar registers can also provide data as input to the
vector functional units, as well as compute addresses to pass to the vector load-
store unit. These are the normal 32 general-purpose registers and 32 floating-
point registers of DLX, though more read and write ports are needed. The sca-
lar registers are also connected to the functional units by the pair of crossbars.

Figure B.2 shows the characteristics of some typical vector processors, includ-
ing the size and count of the registers, the number and types of functional units,
and the number of load-store units.

In DLXYV, vector operations use the same names as DLX operations, but with
the letter “V” appended. These are double-precision, floating-point vector opera-
tions. (We have omitted single-precision FP operations and integer and logical
operations for simplicity.) ThugDDVis an add of two double-precision vectors.
The vector instructions take as their input either a pair of vector regisbDy (
or a vector register and a scalar register, designated by appendingAts)(

In the latter case, the value in the scalar register is used as the input for all opera-
tions—the operatioADDSWill add the contents of a scalar register to each ele-
ment in a vector register. Most vector operations have a vector destination
register, though a few (population count) produce a scalar value, which is stored
to a scalar register. The nam&sandSv denote vector load and vector store, and
they load or store an entire vector of double-precision data. One operand is
the \ector register to be loaded or stored; the other operand, which is a DLX
general-purpose register, is the starting address of the vector in memory.
Figure B.3 lists the DLXV vector instructions. In addition to the vector registers,
we need two additional special-purpose registers: the vector-length and vector-
mask registers. We will discuss these registers and their purpose in sections B.3
and B.5, respectively.

B-6 Appendix B Vector Processors

Clock Elements per
Year rate register (64-bit Load-store

Processor announced (MHz) Registers elements) Functional units units

CRAY-1 1976 80 8 64 6: add, multiply, reciprocal, 1
integer add, logical, shift

CRAY X-MP 1983 120 8 64 8: FP add, FP multiply, FP re- 2 loads

CRAY Y-MP 1988 166 ciprocal, integer add, 2 logical, 1 store
shift, population count/parity

CRAY-2 1985 166 8 64 5: FP add, FP multiply, FP re- 1
ciprocal/sgrt, integer (add shift,
population count), logical

Fujitsu 1982 133 8-256 32-1024 3: FP or integer add/logical, 2

VP100/200 multiply, divide

Hitachi 1983 71 32 256 4: 2 integer add/logical, 4

S810/820 1 multiply-add, and 1 multiply/
divide—add unit

Convex C-1 1985 10 8 128 4: multiply, add, divide, integer/ 1
logical

NEC SX/2 1984 160 8 + 8192 256 variable 16: 4 integer add/logical, 4 FP 8
multiply/divide, 4 FP add,
4 shift

DLXV 1990 200 8 64 5: multiply, divide, add, 1
integer add, logical

Cray C-90 1991 240 8 128 8: FP add, FP multiply, FP re- 4
ciprocal, integer add, 2 logical,
shift, population count/parity

Convex C-4 1994 135 16 128 3: each is full integer, logical,
and FP (including multiply-add)

NEC SX/4 1995 400 8 + 8192 256 variable 16: 4 integer add/logical, 4 FP 8
multiply/divide, 4 FP add,
4 shift

Cray J-90 1995 100 8 64 4: FP add, FP multiply, FP re-
ciprocal, integer/logical

Cray T-90 1996 ~500 8 128 8: FP add, FP multiply, FP re- 4
ciprocal, integer add, 2 logical,
shift, population count/parity

FIGURE B.2 Characteristics of several vector-register architectures. The vector functional units include all operation

units used by the vector instructions. The functional units are floating point unless stated otherwise. If the processor is a
multiprocessor, the entries correspond to the characteristics of one processor. Each vector load-store unit represents the
ability to do an independent, overlapped transfer to or from the vector registers. The Fujitsu VP200’s vector registers are
configurable: The size and count of the 8 K 64-bit entries may be varied inversely to one another (e.g., eight registers each
1 K elements long, or 128 registers each 64 elements long). The NEC SX/2 has eight fixed registers of length 256, plus 8 K
of configurable 64-bit registers. The reciprocal unit on the CRAY processors is used to do division (and square root on the
CRAY-2). Add pipelines perform floating-point add and subtract. The multiply/divide—add unit on the Hitachi S810/820 per-
forms an FP multiply or divide followed by an add or subtract (while the multiply-add unit performs a multiply followed by an
add or subtract). Note that most processors use the vector FP multiply and divide units for vector integer multiply and divide,
just like DLX, and several of the processors use the same units for FP scalar and FP vector operations. Several of the
machines have different clock rates in the vector and scalar units; the clock rates shown are for the vector units.

B.2 Basic Vector Architecture B-7

Instruction Operands Function

ADDV V1,v2,v3 Add elements o¥2 andv3, then put each result irt.

ADDSV V1,FO,V2 Add FO to each element &f2, then put each result Wil

SUBV V1,v2,v3 Subtract elements of3 from V2, then put each result L.

SUBVS V1,v2,F0 SubtractF0 from elements 0f2, then put each result L.

SUBSV V1,FO,V2 Subtract elements af from Fo, then put each result .

MULTV V1,v2,v3 Multiply elements of/2 andv3, then put each result 1.

MULTSV V1,FO,V2 Multiply FO by each element af2, then put each result irt.

DIVV Vv1,v2,v3 Divide elements of2 by v3, then put each result .

DIVVS V1,V2,FO Divide elements o¥2 by F0, then put each result ir.

DIvsv VL,FO,v2 Divide FO by elements o¥2, then put each result irt.

LV V1,R1 Load vector registevl from memory starting at addreRs.

5\ R1,v1 Store vector registerl into memory starting at addreRs.

LVWS V1,(R1,R2) LoadV1 from address a1 with stride inR2, i.e.,R1+i x R2.

SVWS (R1,R2),V1 StoreV1 from address &1 with stride inR2, i.e.,R1+i x R2.

LVI V1,(R1+V2) LoadV1 with vector whose elements areRatv2(i) , i.e.,V2is an index.

SvI (R1+V2),V1 StoreV1 to vector whose elements areratv2(i) , i.e.,vV2is an index.

Cvi V1,R1 Create an index vector by storing the valoesl xR1, 2 xR1,..63 xR1
into V1.

S--V V1,vV2 Compare the elements@ NE, GT, LT, GE LE) in V1 andv2. If condition is true,

S-SV FO,v1 put a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in
vector-mask register§). The instructiors--SvV performs the same compare but
using a scalar value as one operand.

POP R1,VvM Count the 1s in the vector-mask register and store cCOR1t in

CVM Set the vector-mask register to all 1s.

MOVI2S VLR,R1 Move contents oR1 to the vector-length register.

MOVS2I R1,VLR Move the contents of the vector-length registeR1o

MOVF2S VM,FO Move contents of0 to the vector-mask register.

MOVS2F FO,vM Move contents of vector-mask registefrm

FIGURE B.3 The DLXV vector instructions. Only the double-precision FP operations are shown. In addition to the vector
registers, there are two special registers, VLR (discussed in section B.3) and VM(discussed in section B.5). The operations
with stride are explained in section B.3, and the use of the index creation and indexed load-store operations are explained
in section B.5.

A vector processor is best understood by looking at a vector loop on DLXV.
Let’s take a typical vector problem, which will be used throughout this appendix:

Y=axX+Y

X andY are vectors, initially resident in memory, and a is a scalar. This is the so-
called SAXPYor DAXPY loop that forms the inner loop of the Linpack bench-
mark. (SAXPY stands forirsgle-precision_ax X plus Y; DAXPY for double-
precision_a X plus_Y.) Linpack is a collection of linear algebra routines, and the

B-8

Appendix B Vector Processors

routines for performing Gaussian elimination constitute what is known as the
Linpack benchmark. The DAXPY routine, which implements the above loop,
represents a small fraction of the source code of the Linpack benchmark, but it
accounts for most of the execution time for the benchmark.

For now, let us assume that the number of elements, or length, of a vector reg-
ister (64) matches the length of the vector operation we are interested in. (This re-

striction will be lifted shortly.)

EXAMPLE Show the code for DLX and DLXV for the DAXPY loop. Assume that the
starting addresses of X and Y are in Rx and Ry, respectively.

ANSWER Here is the DLX code.
LD FO,a
ADDI R4,Rx,#512

Loop: LD F2,0(Rx)

MULTD F2,FO,F2
LD F4,0(Ry)
ADDD F4,F2,F4
SD O(Ry),F4
ADDI RX,RX,#8
ADDI Ry,Ry,#8
SuUB R20,R4,Rx

BNEZ R20,Loop

;last address to load
;load X(i)

a x X
;load Y(i)

a x X(3i) + Y(@)
;store into Y (i)
;increment index to X
;increment index to Y

;compute bound

;check if done

Here is the code for DLXV for DAXPY.

LD FO,a

LV V1,Rx
MULTSV V2,FO,V1
LV V3,Ry
ADDV V42 V3
Y Ry,V4

;load scalar a

;load vector X
;vector-scalar multiply
;load vector Y

;add

;store the result

There are some interesting comparisons between the two code segments
in this Example. The most dramatic is that the vector processor greatly re-
duces the dynamic instruction bandwidth, executing only six instructions
versus almost 600 for DLX. This reduction occurs both because the vector
operations work on 64 elements and because the overhead instructions

that constitute nearly half the
code.

loop on DLX are not present in the DLXV

B.2 Basic Vector Architecture B-9

Another important difference is the frequency of pipeline interlocks. In the
straightforward DLX code everDDDmust wait for avULTD and everysD must
wait for theADDD On the vector processor, each vector instruction operates on all
the vector elements independently. Thus, pipeline stalls are required only once
per vector operation, rather than once per vector element. In this example, the
pipeline-stall frequency on DLX will be about 64 times higher than it is on
DLXV. The pipeline stalls can be eliminated on DLX by using software pipelin-
ing or loop unrolling (as we saw in Chapter 4). However, the large difference in
instruction bandwidth cannot be reduced.

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on three
factors: the length of the vectors being operated on, structural hazards among the
operations, and the data dependences. Given the vector length amtiaten
rate, which is the rate at which a vector unit consumes new operands and pro-
duces new results, we can compute the time for a single vector instruction. The
initiation rate is usually one per clock cycle for individual operations. However,
some supercomputers have vector instructions that can produce two or more re-
sults per clock, and others have units that may not be fully pipelined. For simplic-
ity, we assume that initiation rates are one throughout this appendix. Thus, the
execution time for a single vector instruction is approximately the vector length.

To simplify the discussion of vector execution and its timing, we will use the
notion of aconvoy which is the set of vector instructions that could potentially
begin execution together in one clock period. (Although the concept of a convoy
is used in vector compilers, no standard terminology exists. Hence, we created
the termconvoy) The instructions in a convayust notcontain any structural or
data hazards (though we will relax this later); if such hazards were present, the
instructions in the potential convoy would need to be serialized and initiated in
different convoys. To keep the analysis simple, we assume that a convoy of in-
structions must complete execution before any other instructions (scalar or vec-
tor) can begin execution. We will relax this in section B.6 by using a less
restrictive, but more complex, method for issuing instructions.

Accompanying the notion of a convoy is a timing metric, calletime that
can be used for estimating the performance of a vector sequence consisting of
convoys. A chime is an approximate measure of execution time for a vector se-
guence; a chime measurement is independent of vector length. Thus, a vector se
guence that consists of convoys executes im chimes, and for a vector length
of n, this is approximatelyn x n clock cycles. A chime approximation ignores
some processor-specific overheads, many of which are dependent on vector
length. Hence, measuring time in chimes is a better approximation for long vec-
tors. We will use the chime measurement, rather than clock cycles per result, to
explicitly indicate that certain overheads are being ignored.

B-10

Appendix B Vector Processors

EXAMPLE

ANSWER

If we know the number of convoys in a vector sequence, we know the execu-
tion time in chimes. One source of overhead ignored in measuring chimes is any
limitation on initiating multiple vector instructions in a clock cycle. If only one
vector instruction can be initiated in a clock cycle (the reality in most vector
processors), the chime count will underestimate the actual execution time of a
convoy. Because the vector length is typically much greater than the number of
instructions in the convoy, we will simply assume that the convoy executes in one

chime.

Show how the following code sequence lays out in convoys, assuming a
single copy of each vector functional unit:

LV V1,Rx ;load vector X
MULTSV V2,FO,V1 ;vector-scalar multiply
Lv V3,Ry ;load vector Y

ADDV V4,V2, V3 ;add

SV Ry,V4 ;store the result

How many chimes will this vector sequence take? How many chimes per
FLOP (floating-point operation) are needed?

The first convoy is occupied by the first LV instruction. The MULTSMs de-
pendent on the first LV, so it cannot be in the same convoy. The second
LV instruction can be in the same convoy as the MULTSVThe ADDMs de-
pendent on the second LV, so it must come in yet a third convoy, and finally
the SVdepends on the ADDVso it must go in a following convoy. This leads
to the following layout of vector instructions into convoys:

1.Lv

2. MULTSV LV
3. ADDV

4.8V

The sequence requires four convoys and hence takes four chimes. Note
that although we allow the MULTSVand the LV both to execute in convoy
2, most vector machines will take two clock cycles to initiate the instruc-
tions. Since the sequence takes a total of four chimes and there are two
floating-point operations per result, the number of chimes per FLOP is

two. .

The chime approximation is reasonably accurate for long vectors. For exam-
ple, for 64-element vectors, the time in chimes is four, so the sequence would
take about 256 clock cycles. The overhead of issuing convoy 2 in two separate

clocks would be small.

B.2 Basic Vector Architecture B-11

Another source of overhead is far more significant than the issue limitation.
The most important source of overhead ignored by the chime model is vector
start-up time The start-up time comes from the pipelining latency of the vector
operation and is principally determined by how deep the pipeline is for the func-
tional unit used. The start-up time increases the effective time to execute a con-
voy to more than one chime. Because of our assumption that convoys do not
overlap in time, the start-up time delays the execution of subsequent convoys. Of
course the instructions in successive convoys have either structural conflicts for
some functional unit or are data dependent, so the assumption of no overlap is
reasonable. The actual time to complete a convoy is determined by the sum of
the vector length and the start-up time. If vector lengths were infinite, this start-
up overhead would be amortized, but finite vector lengths expose it, as the fol-
lowing Example shows.

EXAMPLE Assume the start-up overhead for functional units is shown in Figure B.4.

Unit Start-up overhead
Load and store unit 12 cycles
Multiply unit 7 cycles
Add unit 6 cycles

FIGURE B.4 Start-up overhead.

Show the time that each convoy can begin and the total number of cycles
needed. How does the time compare to the chime approximation for a
vector of length 647

ANSWER Figure B.5 provides the answer in convoys, assuming that the vector
length is n:
Convoy Starting time First-result time Last-result time
1.Lv 0 12 11 +n
2.MULTSV LV 12 +n 12 +n+ 12 23+
3. ADDV 24+ 24+ +6 29+ 3
4.8V 30+ 30+ +12 41 + &

FIGURE B.5 Starting times and first- and last-result times for convoys
1 through 4. The vector length is n.

One tricky question is when we assume the vector sequence is done; this
determines whether the start-up time of the SVis visible or not. We as-
sume that the instructions following cannot fit in the same convoy, and we

B-12

Appendix B Vector Processors

have already assumed that convoys do not overlap. Thus the total time is
given by the time until the last vector instruction in the last convoy com-
pletes. This is an approximation, and the start-up time of the last vector
instruction may be seen in some sequences and not in others. For sim-
plicity, we always include it.

The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock
cycles, while the chime approximation would be 4. The execution time
with start-up overhead is 1.16 times higher. .

For simplicity, we will use the chime approximation for running time, incor-
porating start-up time effects only when we want more detailed performance or
to illustrate the benefits of some enhancement. For long vectors, a typical situa-
tion, the overhead effect is not that large. Later in the appendix we will explore
ways to reduce start-up overhead.

Start-up time for an instruction comes from the pipeline depth for the func-
tional unit implementing that instruction. If the initiation rate is to be kept at one
clock cycle per result, then

Pipeline depth = (Total functional unit timew
Clock cycle time

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock cycle. Pipeline depth, then, is deter-
mined by the complexity of the operation and the clock cycle time of the proces-
sor. The pipeline depths of functional units vary widely—from two to 20 stages is
not uncommon—though the most heavily used units have pipeline depths of four
to eight clock cycles.

For DLXV, we will use the same pipeline depths as the CRAY-1, though more
modern processors might have units with lower latency. All functional units are
fully pipelined. As shown in Figure B.6, pipeline depths are six clock cycles for
floating-point add and seven clock cycles for floating-point multiply. On DLXYV,
as on most vector processors, independent vector operations using different func-
tional units can issue in the same convoy.

Operation Start-up penalty
Vector add 6
Vector multiply 7
Vector divide 20
Vector load 12

FIGURE B.6 Start-up penalties on DLXV. These are the start-up penalties in clock cycles
for DLXV vector operations.

B.2 Basic Vector Architecture B-13

EXAMPLE

ANSWER

Vector Load-Store Units and Vector Memory Systems

The behavior of the load-store vector unit is significantly more complicated than
that of the arithmetic functional units. The start-up time for a load is the time to
get the first word from memory into a register. If the rest of the vector can be sup-
plied without stalling, then the vector initiation rate is equal to the rate at which
new words are fetched or stored. Unlike simpler functional units, the initiation
rate may not necessarily be one clock cycle.

Typically, penalties for start-ups on load-store units are higher than those for
arithmetic functional units—up to 50 clock cycles on some processors. For
DLXV we will assume a start-up time of 12 clock cycles; by comparison, the
CRAY-1 and CRAY X-MP have load-store start-up times of between nine and 17
clock cycles. Figure B.6 summarizes the start-up penalties for DLXV vector op-
erations.

To maintain an initiation rate of one word fetched or stored per clock, the
memory system must be capable of producing or accepting this much data. This
is usually done by creating multiple memory banks, as discussed in section 5.6.
As we will see in the next section, having significant numbers of banks is useful
for dealing with vector loads or stores that access rows or columns of data.

Most vector processors use memory banks rather than simple interleaving for
two primary reasons:

1. Many vector computers support multiple loads or stores per clock. To support
multiple simultaneous accesses, the memory system needs to have multiple
banks and be able to control the addresses to the banks independently.

2. As we will see in the next section, many vector processors support the ability
to load or store data words that are not sequential. In such cases, independen
bank addressing, rather than interleaving, is required.

In Chapter 5 we saw that the desired access rate and the bank access time dete
mined how many banks were needed to access a memory without a stall. The
next Example shows how these timings work out in a vector processor.

Suppose we want to fetch a vector of 64 elements starting at byte address
136, and a memory access takes six clocks. How many memory banks
must we have? With what addresses are the banks accessed? When will
the various elements arrive at the CPU?

Six clocks per access require at least six banks, but because we want the
number of banks to be a power of two, we choose to have eight banks.
Figure B.7 shows what byte addresses each bank accesses within each
time period. Remember that a bank begins a new access as soon as it
has completed the old access.

B-14 Appendix B Vector Processors

Beginning Bank
at clock no. 0 1 2 3 4 5 6 7
0 192 136 144 152 160 168 176 184
6 256 200 208 216 224 232 240 248
14 320 264 272 280 288 296 304 312
22 384 328 336 344 352 360 368 376

FIGURE B.7 Memory addresses (in bytes) by bank number and time slot at
which access begins. The exact time when a bank transmits its data is given by
the address it accesses minus the starting address, divided by eight, plus the mem-
ory latency (six clocks). It is important to observe that bank 0 accesses a word in
the next block (i.e., it accesses 192 rather than 128 and then 256 rather than 192,
and so on). If bank O were to start at the lower address, we would require an extra
cycle to transmit the data, and we would transmit one value unnecessarily. While
this problem is not severe for this example, if we had 64 banks, up to 63 unneces-
sary clock cycles and transfers could occur. The fact that bank 0 does not access
a word in the same block of eight distinguishes this type of memory system from
interleaved memory. Normally, interleaved memory systems combine the bank ad-
dress and the base starting address by concatenation rather than addition. Also,
interleaved memories are almost always implemented with synchronized access.
Memory banks require address latches for each bank, which are not normally
needed in a system with only interleaving. This timing diagram is drawn as if all
banks access in clock 0, clock 16, etc. In practice, since the bus allocations needed
to return the words are staggered, the actual accesses are often staggered.

Figure B.8 shows the timing for the first few sets of accesses for an
eight-bank system with a six-clock-cycle access latency. There are two
important observations about Figures B.7 and B.8: First, notice that the
exact address fetched by a bank is largely determined by the lower-order
bits in the bank number; however, the initial access to a bank is always
within eight double words of the starting address. Second, notice that
once the initial latency is overcome (six clocks in this case), the pattern
is to access a bank every n clock cycles, where nis the total number of
banks (n = 8 in this case).

Next access Next access Deliver
Memory | +deliver last | + deliver last last
access | 8 words | 8 words | soe | 8 words |

Time | | | |“' | |

0 6 14 22 62 70

Action |

FIGURE B.8 Access timing for the first 64 double-precision words of the load.
After the six-clock-cycle initial latency, eight double-precision words are returned every
eight clock cycles.

B.3 Two Real-World Issues: Vector Length and Stride B-15

The number of banks in the memory system and the pipeline depth in the
functional units are essentially counterparts, since they determine the initiation
rates for operations using these units. The processor cannot access a memor
bank faster than the memory cycle time. Thus, if memory is built from DRAM,
where the memory cycle time is about twice the access time, the processor need:
twice as many banks as the above Example shows. For memory systems that sup
port multiple simultaneous vector accesses or allow nonsequential accesses in
vector loads or stores, the number of memory banks should be larger than the
minimum, otherwise, memory bank conflicts will exist. We explore this in more
detail in the next section.

B.3

Two Real-World Issues:
Vector Length and Stride

This section deals with two issues that arise in real programs: What do you do
when the vector length in a program is not exactly 64? How do you deal with
nonadjacent elements in vectors that reside in memory? First, let's consider the
issue of vector length.

Vector-Length Control

A vector-register processor has a natural vector length determined by the number
of elements in each vector register. This length, which is 64 for DLXV, is un-
likely to match the real vector length in a program. Moreover, in a real program
the length of a particular vector operation is often unknown at compile time. In
fact, a single piece of code may require different vector lengths. For example,
consider this code:

do 10i=1n
10 Y@=a OX@) + (@)

The size of all the vector operations depends,avhich may not even be known
until runtime! The value aof might also be a parameter to a procedure containing
the above loop and therefore be subject to change during execution.

The solution to these problems is to createcor-length registefVLR). The
VLR controls the length of any vector operation, including a vector load or store.
The value in the VLR, however, cannot be greater than the length of the vector
registers. This solves our problem as long as the real length is less thaaxthe
mum vector lengttMVL) defined by the processor.

What if the value ofi is not known at compile time, and thus may be greater
than MVL? To tackle the second problem where the vector is longer than the
maximum length, a technique callgiiip miningis used. Strip mining is the gen-
eration of code such that each vector operation is done for a size less than or

B-16

Appendix B Vector Processors

equal to the MVL. We could strip-mine the loop in the same manner that we un-
rolled loops in Chapter 4: Create one loop that handles any number of iterations
that is a multiple of MVL and another loop that handles any remaining iterations,
which must be less than MVL. In practice, compilers usually create a single strip-
mined loop that is parameterized to handle both portions by changing the length.
The strip-mined version of the DAXPY loop written in FORTRAN, the major
language used for scientific applications, is shown with C-style comments:

low=1
VL = (n mod MVL) /*find the odd size piece*/
do 1j=0,(n/MVL) *outer loop*/
do 10i=low, low+VL-1 /*runs for length VVL*/
Y@)=a *X(i)+ Y(i) #main operation*/
10 continue
low = low+VL /*start of next vector*/
VL = MVL Freset the length to max*/
1 continue

The termn/MVL represents truncating integer division (which is what FOR-
TRAN does) and is used throughout this section. The effect of this loop is to
block the vector into segments which are then processed by the inner loop. The
length of the first segment (s mod MVL) and all subsequent segments are of
lengthMVL This is depicted in Figure B.9.

Value of j 0 1 2 3 S . n/MVL
Range of i 1.m (m+1).. (m+ (m+2* . s (n-MvL
m+MVL MVL+1) MVL+1) +1)..n
M2 LMm+3*
MVL MVL

FIGURE B.9 A vector of arbitrary length processed with strip mining. All blocks but the
first are of length MVL, utilizing the full power of the vector processor. In this figure, the vari-
able mis used for the expression (N modMVL).

The inner loop of the code above is vectorizable with levigtivhich is equal
to either(n modMVL) or MVL. The VLR register must be set twice—once at each
place where the variabl. in the code is assigned. With multiple vector opera-
tions executing in parallel, the hardware must copy the value of VLR when a vec-
tor operation issues, in case VLR is changed for a subsequent vector operation.

B.3 Two Real-World Issues: Vector Length and Stride B-17

EXAMPLE

ANSWER

In addition to the start-up overhead, we need to account for the overhead of
executing the strip-mined loop. This strip-mining overhead, which arises from
the need to reinitiate the vector sequence and set the VLR, effectively adds to the
vector start-up time, assuming that a convoy does not overlap with other instruc-
tions. If that overhead for a convoy is 10 cycles, then the effective overhead per
64 elements increases by 10 cycles, or 0.15 cycles per element.

There are two key factors that contribute to the running time of a strip-mined
loop consisting of a sequence of convoys:

1. The number of convoys in the loop, which determines the number of chimes.
We use the notatiof,;.for the execution time in chimes.

2. The overhead for each strip-mined sequence of convoys. This overhead con-
sists of the cost of executing the scalar code for strip mining each Biggk,
plus the vector start-up cost for each conviQy+

There may also be a fixed overhead associated with setting up the vector se-
guence the first time. In recent vector processors this overhead has become quite
small, so we ignore it.

The components can be used to state the total running time for a vector se-
guence operating on a vector of lengthvhich we will callT:

[n
T, = (MVL-‘ % (Tloop * Tstar) * 7 % Tehime

The values of Ji;4 Tigop @and Tyime @re compiler and processor dependent. The
register allocation and scheduling of the instructions affect both what goes in a
convoy and the start-up overhead of each convoy.

For simplicity, we will use a constant value fggop, on DLXV. Based on a va-
riety of measurements of CRAY-1 vector execution, the value chosen is 15 for
Tioop- At first glance, you might think that this value is too small. The overhead in
each loop requires setting up the vector starting addresses and the strides, incre
menting counters, and executing a loop branch. In practice, these scalar instruc-
tions can be totally or partially overlapped with the vector instructions,
minimizing the time spent on these overhead functions. The valuggfor
course depends on the loop structure, but the dependence is slight compared witt
the connection between the vector code and the valuggigt&nd Tiart

What is the execution time on DLXV for the vector operation A=B x s,
where s is a scalar and the length of the vectors A and B is 200?

Assume the addresses of A and B are initially in Raand Rb, s is in Fs, and
recall that for DLX (and DLXV) RO always holds 0. Since (200 mod 64) =
8, the first iteration of the strip-mined loop will execute for a vector length

B-18

Appendix B Vector Processors

of eight elements, and the following iterations will execute for a vector
length of 64 elements. The starting byte addresses of the next segment of
each vector is eight times the vector length. Since the vector length is ei-
ther eight or 64, we increment the address registers by 8 x 8 = 64 after the
first segment and 8 x 64 = 512 for latter segments. The total number of
bytes in the vector is 8 x 200 = 1600, and we test for completion by com-
paring the address of the next vector segment to the initial address plus
1600. Here is the actual code:

ADDI R2,R0,#1600 ;total # bytes in vector

ADD R2,R2,Ra ;address of the end of A vector

ADDI R1,R0,#8 ;loads length of 1st segment

MOVI2S VLR,R1 ;load vector length in VLR

ADDI R1,R0,#64 ;length in bytes of 1st segment

ADDI R3,R0,#64 ;vector length other segments
Loop: LV V1,Rb ;load B

MULTSV V2,Fs,V1 ;vector * scalar

SV Ra,Vv2 ;store A

ADD Ra,Ra,R1 ;address of next segment of A

ADD Rb,Rb,R1 ;address of next segment of B

ADDI R1,R0,#512 ;load byte offset next segment

MOVI2S VLR,R3 ;set length to 64 element

SuUB R4,R2,Ra ;at the end of A?

BNEZ R4,Loop ;if not, go back

The three vector instructions in the loop are dependent and must go into
three convoys, hence T¢hime = 3. Let’s use our basic formula:

[n
T, = (w X (Tloop * Tstar) * 7 % Tonime

MVL
Togg = 4% (15+ Tg,q) +200%3
Togg = 60+ (4xTg,) +600 = 660 + (4 x T 1)

The value of Tgtart is the sum of

» The vector load start-up of 12 clock cycles

» A seven-clock-cycle start-up for the multiply

» A 12-clock-cycle start-up for the store.

Thus, the value of Tgtart is given by
Tstart=12+7 +12=31

So, the overall value becomes

T,00= 660 + 4x 31= 784

B.3 Two Real-World Issues: Vector Length and Stride B-19

The execution time per element with all start-up costs is then 784/200 =
3.9, compared with a chime approximation of three. In section B.6, we will
be more ambitious—allowing overlapping of separate convoys. .

Figure B.10 shows the overhead and effective rates per element for the above
example (A = Bx s) with various vector lengths. A chime counting model would
lead to three clock cycles per element, while the two sources of overhead add 0.9
clock cycles per element in the limit.

The next few sections introduce enhancements that reduce this time. We will
see how to reduce the number of convoys and hence the number of chimes using
a technique calledhaining The loop overhead can be reduced by further over-
lapping the execution of vector and scalar instructions, allowing the scalar loop
overhead in one iteration to be executed while the vector instructions in the previ-
ous instruction are completing. Finally, the vector start-up overhead can also be
eliminated, using a technique that allows overlap of vector instructions in sepa-
rate convoys.

Clock
cycles Total time

per element

Total
overhead
0 1 1 1 1 1 L 1 1 1 per element

Vector size

FIGURE B.10 This shows the total execution time per element and the total overhead

time per element, versus the vector length for the Example on page B-17. For short vec-
tors the total start-up time is more than one-half of the total time, while for long vectors it re-
duces to about one-third of the total time. The sudden jumps occur when the vector length
crosses a multiple of 64, forcing another iteration of the strip-mining code and execution of a
set of vector instructions. These operations increase T, by Tioop + Tstar-

B-20

Appendix B Vector Processors

Vector Stride

The second problem this section addresses is that the position in memory of adja-
cent elements in a vector may not be sequential. Consider the straightforward
code for matrix multiply:

do 10i=1,100
do 10j=1,100
Aij) = 0.0
do 10k = 1,100
10 AG,) = AG)+B(.K) «C(k,)

At the statement labeled 10 we could vectorize the multiplication of each row of
B with each column o€ and strip-mine the inner loop withas the index vari-
able.

To do so, we must consider how adjacent elemergsird adjacent elements
in C are addressed. As we discussed in section 5.3, when an array is allocated
memory it is linearized and must be laid out in either row-major or column-major
order. This linearization means that either the elements in the row or the elements
in the column are not adjacent in memory. For example, if the above loop were
written in FORTRAN, which allocates column-major order, the elemeng of
that are accessed by iterations in the inner loop are separated by the row size
times 8 (the number of bytes per entry) for a total of 800 bytes. In Chapter 5, we
saw that blocking could be used to improve the locality in cache-based systems.
In vector processors we do not have caches, so we need another technique to
fetch elements of a vector that are not adjacent in memory.

This distance separating elements that are to be gathered into a single register
is called thestride. In the current example, using column-major layout for the
matrices means that mati@has a stride of 1, or 1 double word (8 bytes), sepa-
rating successive elements, and marhas a stride of 100, or 100 double words
(800 bytes).

Once a vector is loaded into a vector register it acts as if it had logically adja-
cent elements. Thus a vector-register processor can handle strides greater than
one, callednonunit strides using only vector-load and vector-store operations
with stride capability. This ability to access nonsequential memory locations and
to reshape them into a dense structure is one of the major advantages of a vector
processor over a cache-based processor. Caches inherently deal with unit stride
data, so that while increasing block size can help reduce miss rates for large sci-
entific data sets, increasing block size can have a negative effect for data that is
accessed with nonunit stride. While blocking techniques can solve some of these
problems (see section 5.3), the ability to efficiently access data that is not contig-
uous remains an advantage for vector processors on certain problems.

On DLXYV, where the addressable unit is a byte, the stride for our example
would be 800. The value must be computed dynamically, since the size of the
matrix may not be known at compile time—qust like vector length—may

B.3 Two Real-World Issues: Vector Length and Stride B-21

EXAMPLE

ANSWER

change for different executions of the same statement. The vector stride, like the
vector starting address, can be put in a general-purpose register. Then the DLXV
instructionLvWS(load vector with stride) can be used to fetch the vector into a
vector register. Likewise, when a nonunit stride vector is being stSkatls

(store vector with stride) can be used. In some vector processors the loads anc
stores always have a stride value stored in a register, so that only a single load anc
a single store instruction are required.

Complications in the memory system can occur from supporting strides greater
than one. In Chapter 5 we saw that memory accesses could proceed at full speed i
the number of memory banks was at least as large as the memory-access time i
clock cycles. Once nonunit strides are introduced, however, it becomes possible to
request accesses from the same bank at a higher rate than the memory-access tim
When multiple accesses contend for a bank, a memory bank conflict occurs and
one access must be stalled. A bank conflict, and hence a stall, will occur if

Least common multiple (Stride, Number of banks)
Stride

< Memory-access latency

Suppose we have 16 memory banks with a read latency of 12 clocks. How
long will it take to complete a 64-element vector load with a stride of 1?
With a stride of 32?

Since the number of banks is larger than the read latency, for a stride of
1, the load will take 12 + 64 = 76 clock cycles, or 1.2 clocks per element.
The worst possible stride is a value that is a multiple of the number of
memory banks, as in this case with a stride of 32 and 16 memory banks.
Every access to memory will collide with the previous one. This leads to
a read latency of 12 clock cycles per element and a total time for the
vector load of 768 clock cycles. .

Memory bank conflicts will not occur if the stride and number of banks are rel-
atively prime with respect to each other and there are enough banks to avoid con-
flicts in the unit-stride case. When there are no bank conflicts, multiword and unit
strides run at the same rates. Increasing the number of memory banks to a numbe
greater than the minimum to prevent stalls with a stride of length 1 will decrease
the stall frequency for some other strides. For example, with 64 banks, a stride of
32 will stall on every other access, rather than every access. If we originally had a
stride of 8 and 16 banks, every other access would stall; while with 64 banks, a
stride of 8 will stall on every eighth access. If we have multiple memory pipelines,
we will also need more banks to prevent conflicts. In 1995, most vector supercom-
puters have at least 64 banks, and some have as many as 1024 in the maximur
memory configuration. Because bank conflicts can still occur in nonunit stride
cases, many programmers favor unit stride accesses whenever possible.

B-22

Appendix B Vector Processors

B.4 | Effectiveness of Compiler Vectorization

Two factors affect the success with which a program can be run in vector mode.
The first factor is the structure of the program itself: Do the loops have true data
dependences, or can they be restructured so as not to have such dependences?
This factor is influenced by the algorithms chosen and, to some extent, by how
they are coded. The second factor is the capability of the compiler. While no
compiler can vectorize a loop where no parallelism among the loop iterations ex-
ists, there is tremendous variation in the ability of compilers to determine wheth-
er a loop can be vectorized. The techniques used to vectorize programs are the
same as those discussed in Chapter 4 for uncovering ILP; here we simply review
how well these techniques work.

As an indication of the level of vectorization that can be achieved in scientific
programs, let's look at the vectorization levels observed for the Perfect Club
benchmarks, mentioned in Chapter 1. These benchmarks are large, real scientific
applications. Figure B.11 shows the percentage of floating-point operations in

FP operations executed

Benchmark name FP operations in vector mode
ADM 23% 68%
DYFESM 26% 95%
FLO52 41% 100%
MDG 28% 27%
MG3D 31% 86%
OCEAN 28% 58%
QCD 14% 1%
SPICE 16% 7%
TRACK 9% 23%
TRFD 22% 10%

FIGURE B.11 Level of vectorization among the Perfect Club benchmarks when exe-
cuted on the CRAY X-MP. The first column contains the percentage of operations that are
floating point, while the second contains the percentage of FP operations executed in vector
instructions.

each benchmark and the percentage executed in vector mode on the CRAY X-MP.
The wide variation in level of vectorization has been observed by several studies
of the performance of applications on vector processors. While better compilers
might improve the level of vectorization in some of these programs, most will

B.5 Enhancing Vector Performance B-23

require rewriting to achieve significant increases in vectorization. For example, a
new program or a significant rewrite will be needed to obtain the benefits of a
vector processor on SPICE.

There is also tremendous variation in how well compilers do in vectorizing
programs. As a summary of the state of vectorizing compilers, consider the data
in Figure B.12, which shows the extent of vectorization for different processors
using a test suite of 100 hand-written FORTRAN kernels. The kernels were de-
signed to test vectorization capability and can all be vectorized by hand; we will
see several examples of these loops in the Exercises.

Completely Partially Not
Processor Compiler vectorized vectorized vectorized
CDC CYBER-205 VAST-2 V2.21 62 5 33
Convex C-series FC5.0 69 5 26
CRAY X-MP CFT77 V3.0 69 3 28
CRAY X-MP CFT V1.15 50 1 49
CRAY-2 CFT2 V3.1a 27 1 72
ETA-10 FTN 77 V1.0 62 7 31
Hitachi S810/820 FORT77/HAP V20-2B 67 4 29
IBM 3090/VF VS FORTRAN V2.4 52 4 44
NEC SX/2 FORTRAN77 / SX V.040 66 5 29
FIGURE B.12 Result of applying vectorizing compilers to the 100 FORTRAN test kernels. For each

processor we indicate how many loops were completely vectorized, partially vectorized, and unvectorized.
These loops were collected by Callahan, Dongarra, and Levine [1988]. Two different compilers for the CRAY

X-MP show the large dependence on compiler technology.

B.5 | Enhancing Vector Performance

Three techniques for improving the performance of vector processors are dis-
cussed in this section. The first deals with making a sequence of dependent vectol
operations run faster. The other two deal with expanding the class of loops that
can be run in vector mode. The first technigimajning,originated in the CRAY-

1, but is now supported on most vector processors. The techniques discussed ir
the second and third parts of this section combat the effects of conditional execu-
tion and sparse matrices. The extensions are taken from a variety of processors
including the most recent supercomputers.

B-24

Appendix B Vector Processors

Chaining—The Concept of Forwarding Extended
to Vector Registers

Consider the simple vector sequence

MULTV V1V2\V3
ADDV V4V1V5

In DLXV, as it currently stands, these two instructions must be put into two sepa-
rate convoys, since the instructions are dependent. On the other hand, if the vec-
tor register,v1 in this case, is treated not as a single entity but as a group of
individual registers, then the ideas of forwarding can be conceptually extended to
work on individual elements of a vector. This insight, which will allowAbev

to start earlier in this example, is callgthining Chaining allows a vector opera-

tion to start as soon as the individual elements of its vector source operand be-
come available: The results from the first functional unit in the chain are
“forwarded” to the second functional unit. In practice, chaining is often imple-
mented by allowing the processor to read and write a particular register at the
same time, albeit to different elements. Early implementations of chaining
worked like forwarding, but this restricted the timing of the source and destina-
tion instructions in the chain. Recent implementations fleséble chaining

which allows a vector instruction to chain to essentially any other active vector
instruction, assuming that no structural hazard is generated. Flexible chaining re-
quires more read and write ports for the vector register file, but it is the form of
chaining used in most recent machines. We assume this type of chaining through-
out the rest of this appendix.

Even though a pair of operations depend on one another, chaining allows the
operations to proceed in parallel on separate elements of the vector. This permits
the operations to be scheduled in the same convoy and reduces the number of
chimes required. For the sequence above, a sustained rate (ignoring start-up) of
two floating-point operations per clock cycle, or one chime, can be achieved,
even though the operations are dependent! The total running time for the above
sequence becomes

Vector length + Start-up timgp,, + Start-up timgy, v

Figure B.13 shows the timing of a chained and an unchained version of the above
pair of vector instructions with a vector length of 64. This convoy requires one
chime; however, because it uses chaining, the start-up overhead will be seen in
the actual timing of the convoy. In Figure B.13, the total time for chained opera-
tion is 77 clock cycles, or 1.2 cycles per result. With 128 floating-point operations
done in that time, 1.7 FLOPs per clock cycle are obtained. For the unchained ver-
sion, there are 141 clock cycles or 0.9 FLOPs per clock cycle.

Although chaining allows us to reduce the chime component of the execution
time by putting two dependent instructions in the same convoy, it does not

B.5 Enhancing Vector Performance B-25

7 64 6 64

Unchained I I I I ITotaI:141
MULTV ADDV
|1 64
Chained MULTV

6 64
H———— Total=77
ADDV

FIGURE B.13 Timings for a sequence of dependent vector operations ADDV and
MULTYV, both unchained and chained. The 6- and 7-clock-cycle delays are the latency of
the adder and multiplier.

eliminate the start-up overhead. If we want an accurate running time estimate, we
must count the start-up time both within and across convoys. With chaining the
number of chimes for a sequence is determined by the number of different vector
functional units available in the processor and the number required by the appli-
cation. In particular, no convoy can contain a structural hazard. This means, for
example, that a sequence containing two vector memory instructions must take at
least two convoys, and hence two chimes, on a processor like DLXV with only
one vector load-store unit.

We will see in section B.6 that chaining plays a major role in boosting vector
performance. In fact, chaining is so important that virtually every vector proces-
sor now supports flexible chaining.

Conditionally Executed Statements

In the last section, we saw that many programs only achieved low to moderate
levels of vectorization. Because of Amdahl’s Law, the speedup on such programs
will be very limited. Two reasons why higher levels of vectorization are not
achieved are the presence of conditionals (if statements) inside loops and the use
of sparse matrices. Programs that contain if statements in loops cannot be run in
vector mode using the techniques we have discussed so far because the if state
ments introduce control dependences into a loop. Likewise, sparse matrices can-
not be efficiently implemented using any of the capabilities we have seen so far;
this is one factor in the lack of vectorization for SPICE. We discuss strategies for
dealing with conditional execution here, leaving the discussion of sparse matrices
to the following subsection.

Consider the following loop:

do 100i=1,64
it (A). ne.0) then
A() = A() —B()

endif

100 continue

B-26

Appendix B Vector Processors

This loop cannot normally be vectorized because of the conditional execution
of the body; however, if the inner loop could be run for the iterations for which
A(i) # 0, then the subtraction could be vectorized. In Chapter 4, we saw that the
conditionally executed instructions could turn such control dependences into
data dependences, enhancing the ability to parallelize the loop. Vector proces-
sors can benefit from an equivalent capability for vectors.

The extension that is commonly used for this capabilityastor-mask
control. The vector-mask control uses a Boolean vector of length MVL to control
the execution of a vector instruction just as conditionally executed instructions
use a Boolean condition to determine whether an instruction is executed. When
thevector-mask registas enabled, any vector instructions executed operate only
on the vector elements whose corresponding entries in the vector-mask register
are 1. The entries in the destination vector register that correspond to a 0 in the
mask register are unaffected by the vector operation. If the vector-mask register is
set by the result of a condition, only elements satisfying the condition will be af-
fected. Clearing the vector-mask register sets it to all 1s, making subsequent vec-
tor instructions operate on all vector elements. The following code can now be
used for the above loop, assuming that the starting addresses of A and Baare in
andRb, respectively:

LV V1,Ra :load vector A into V1

LV V2,Rb ;load vector B

LD FO,#0 :load FP zero into FO

SNESV FO,vV1 ;sets VM) to 1 if V(i) #F0
SUBV V1iviVv2 :subtract under vector mask

CVvM ;set the vector mask to all 1s

SV Ra,v1 ;store the resultin A

Most recent vector processors provide vector-mask control. The vector-mask
capability described here is available on some processors, but others allow the
use of the vector mask with only a subset of the vector instructions.

Using a vector-mask register does, however, have disadvantages. When we ex-
amined conditionally executed instructions, we saw that such instructions still re-
quire execution time when the condition is not satisfied. Nonetheless, the
elimination of a branch and the associated control dependences can make a con-
ditional instruction faster even if it sometimes does useless work. Similarly, vec-
tor instructions executed with a vector mask still take execution time, even for the
elements where the mask is 0. Likewise, even with a significant number of zeros
in the mask, using vector-mask control may still be significantly faster than using
scalar mode. In fact, the large difference in potential performance between vector
and scalar mode makes the inclusion of vector-mask instructions critical.

Second, in some vector processors the vector mask serves only to disable the
storing of the result into the destination register, and the actual operation still oc-
curs. Thus, if the operation in the above example were a divide rather than a

B.5 Enhancing Vector Performance B-27

subtract and the test was on B rather than A, false floating-point exceptions might
result since a division by 0 would occur. Processors that mask the operation as
well as the storing of the result avoid this problem.

Sparse Matrices

There are techniques for allowing programs with sparse matrices to execute in
vector mode. In a sparse matrix, the elements of a vector are usually stored in
some compacted form and then accessed indirectly. Assuming a simplified sparse
structure, we might see code that looks like this:

do 100i=1,n
100 A(K(@) = AK(Q) + CM())

This code implements a sparse vector sum on the axi@ydC, using index vec-
torsK andMto designate the nonzero elementa ahdC. (A andC must have the
same number of nonzero elementsef them.) Another common representation
for sparse matrices uses a hit vector to say which elements exist and a dense vec
tor for the nonzero elements. Often both representations exist in the same pro-
gram. Sparse matrices are found in many codes, and there are many ways tc
implement them, depending on the data structure used in the program.

A primary mechanism for supporting sparse matricesaster-gather opera-
tions using index vectors. The goal of such operations is to support moving be-
tween a dense representation (i.e., zeros are not included) and normal
representation (i.e., the zeros are included) of a sparse magiathéroperation
takes arnindex vectorand fetches the vector whose elements are at the addresses
given by adding a base address to the offsets given in the index vector. The result
is a nonsparse vector in a vector register. After these elements are operated on ir
dense form, the sparse vector can be stored in expanded forstagaastore,
using the same index vector. Hardware support for such operations isscalied
ter-gatherand appears on several processors. The instrudtiondoad vector
indexed) andsVi (store vector indexed) provide these operations in DLXV. For
example, assuming th&k, Rc, Rk, andRmcontain the starting addresses of the
vectors in the above sequence, the inner loop of the sequence can be coded witl
vector instructions such as

LV Vk,Rk :load K

LVI Va,(Ra+VKk) ;load A(K(I))
LV Vm,Rm load M
LVI Vc,(Rc+Vm) sload C(M(l))
ADDV Va,Va,Vc ;add them

Svi (Rat+Vk),Va ;store A(K(I))

B-28

Appendix B Vector Processors

This technique allows code with sparse matrices to be run in vector mode. The
source code above woultbverbe automatically vectorized by a compiler be-
cause the compiler cannot know that the elementsark distinct values, and
thus that no dependences exist. Instead, a programmer directive would tell the
compiler that it could run the loop in vector mode; without such directives, pro-
grams such as SPICE will not be vectorized even if the hardware support exists.

A scatter-gather capability is included on many of the recent supercomputers.
Such operations rarely run at one element per clock, but they are still much faster
than the alternative, which may be a scalar loop. If the sparsity properties of a
matrix change, a new index vector must be computed. Many processors provide
support for computing the index vector quickly. Thé (create vector index) in-
struction in DLXV creates an index vector given a stridg (vhere the values in
the index vector are @Oy, 2x m, ..., 63x m. Some processors provide an instruc-
tion to create a compressed index vector whose entries correspond to the posi-
tions with a 1 in the mask register. Other vector architectures provide a method to
compress a vector. In DLXV, we define tael instruction to always create a
compressed index vector using the vector mask. When the vector mask is all
ones, a standard index vector will be created.

The indexed loads-stores and v instruction provide an alternative meth-
od to support conditional vector execution. Here is a vector sequence that imple-
ments the loop we saw on page B-25:

LV V1,Ra :load vector A into V1

LD FO,#0 :load FP zero into FO

SNESV Fo,v1 ;sets the VM to 1 if V(i) #F0
CvI V2 #8 ;generates indices in V2

POP R1,vM :find the number of 1's in VM
MOVI2S VLR,R1 ;load vector length register
CVvM :clears the mask

LVI V3,(Ra+V2) ;load the nonzero A elements
LVI V4,(Rb+V2) ;load corresponding B elements
SUBV V3,V3V4 :do the subtract

SVI (Ra+V2),V3 ;store A back

Whether the implementation using scatter-gather is better than the condition-
ally executed version depends on the frequency with which the condition holds
and the cost of the operations. Ignoring chaining, the running time of the first ver-
sion (on page B-25) isn5t+ ¢1. The running time of the second version, using in-
dexed loads and stores with a running time of one element per clonk; kx4f
x n + ¢y, Wheref is the fraction of elements for which the condition is true (i.e., A
0). If we assume that the valuescgfandc, are comparable, or that they are
much smaller than, we can find when this second technique is better.

B.6 Putting It All Together: Performance of Vector Processors B-29

5(n)

Time2 = 4dn+A4Xxfxn

Tlmel

We want Timg = Time,, so

Snz2dn+4xfxn

That is, the second method is faster if less than one-quarter of the elements are
nonzero. In many cases the frequency of execution is much lower. If the index

vector can be reused, or if the number of vector statements within the if statement
grows, the advantage of the scatter-gather approach will increase sharply.

B.6

Putting It All Together:
Performance of Vector Processors

In this section we look at different measures of performance for vector processors
and what they tell us about the processor. To determine the performance of a pro-
cessor on a vector problem we must look at the start-up cost and the sustainec
rate. The simplest and best way to report the performance of a vector processor
on a loop is to give the execution time of the vector loop. For vector loops people
often give the MFLOPS (millions of floating-point operations per second) rating
rather than execution time. We use the notatigrioRthe MFLOPS rating on a
vector of lengtm. Using the measurementg {fime) or R, (rate) is equivalent if

the number of FLOPs is agreed upon (see Chapter 1 for a longer discussion on
MFLOPS). In any event, either measurement should include the overhead.

In this section we examine the performance of DLXV on our DAXPY loop by
looking at performance from different viewpoints. We will continue to compute
the execution time of a vector loop using the equation developed in section B.3.
At the same time, we will look at different ways to measure performance using
the computed time. The constant values fgpglused in this section introduce
some small amount of error, which will be ignored.

Measures of Vector Performance

Because vector length is so important in establishing the performance of a pro-
cessor, length-related measures are often applied in addition to time and
MFLOPS. These length-related measures tend to vary dramatically across differ-
ent processors and are interesting to compare. (Remember, thoutimeisaal-

ways the measure of interest when comparing the relative speed of two
processors.) Three of the most important length-related measures are

B-30

Appendix B Vector Processors

« R,—The MFLOPS rate on an infinite-length vector. Although this measure
may be of interest when estimating peak performance, real problems do not
have unlimited vector lengths, and the overhead penalties encountered in real
problems will be larger.

« Ngz/2—The vector length needed to reach one-half gf Rhis is a good mea-
sure of the impact of overhead.

= N,—The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors.

Let's look at these measures for our DAXPY problem running on DLXV.
When chained, the inner loop of the DAXPY code in convoys looks like Figure
B.14 (assuming thax andRy hold starting addresses).

LVV1Rx MULTSV Convoy 1: chained load and multiply
V2,FO,V1

LVV3,Ry ADDVV4V2V3 Convoy 2: secondloadand ADD, chained

SVRy,V4 Convoy 3: store the result

FIGURE B.14 The chained inner loop of the DAXPY code in convoys.

Recall our performance equation for the execution time of a vector loop with
elements,

— n
Ty = Thase * (MVLW x (Tloop * Tstar) * 7% Topime

Chaining allows the loop to run in three chimes (and no less, since there is one
memory pipeline); thus chime = 3. If Tchime Were a complete indication of per-
formance, the loop would run at a MFLOPS rate of*2(3ock rate (since there

are 2 FLOPs per iteration). Thus, based only on the chime count, a 200-MHz
DLXV would run this loop at 133 MFLOPS assuming no strip-mining or start-up
overhead. There are several ways to improve the performance: add additional
vector load-store units, allow convoys to overlap to reduce the impact of start-up
overheads, and decrease the number of loads required by vector register alloca-
tion. We will examine the first two extensions in this section. The last optimiza-
tion is actually used for the Cray-1, DLXV'’s cousin, to boost the performance by
50%. Reducing the number of loads requires an interprocedural optimization; we
examine this transformation in Exercise B.6. Before we examine the first two ex-
tensions, let's see what the real performance, including overhead, is.

The Peak Performance of DLXV on DAXPY

First, we should determine what the peak performange réally is, since we
know it must differ from the ideal 133-MFLOPS rate. For now, we continue to
use the simplifying assumption that a convoy cannot start until all the instructions
in an earlier convoy have completed; later we will remove this restriction. Using

B.6 Putting It All Together: Performance of Vector Processors B-31

this simplification, the start-up overhead for the vector sequence is simply the
sum of the start-up times of the instructions:

T =12+7+12+6+12 = 49

start

Using MVL = 64, Toop = 15, Tga= 49, and Fhime = 3 in the performance
equation, and assuming thats not an exact multiple of 64, the time for @an
element operation is

T = |27 | x(15+49)+3n
i (64}()

(n+64)+3n
4n + 64

The sustained rate is actually over 4 clock cycles per iteration, rather than the the-
oretical rate of 3 chimes, which ignores overhead. The major part of the differ-
ence is the cost of the start-up overhead for each block of 64 elements (49 cycles
versus 15 for the loop overhead).

We can now compute Rfor a 200-MHz clock as

R = lim Operations per iteration x Clock rate]
C N | Clock cycles per iteration o

—

The numerator is independentmptence

Operations per iteration x Clock rate

Re = lim (Clock cycles per iteration)
n — oo
lim (Clock cycles per iteration) = lim DT—@ = lim [fn+640 4
" oo nooobnld o O
R,, = 22200 MHz 202 MHZ — 100 MFLOPS

The performance without the start-up overhead, which is the peak performance
given the vector functional unit structure, is now 1.33 times higher. In actuality the
gap between peak and sustained performance for this benchmark is even larger!

Sustained Performance of DLXV on the Linpack Benchmark

The Linpack benchmark is a Gaussian elimination on ax10@0 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of l&ngjtiseck
times. Thus, the average vector length is given by

B-32

Appendix B Vector Processors

EXAMPLE

ANSWER

i=1

Now we can obtain an accurate estimate of the performance of DAXPY using a
vector length of 66.

Tee = 2%(15+49) +66 x3 = 128+198 = 326
_ 2x66x200 _
Rgs = 396 MFLOPS = 81 MFLOPS

The peak number, ignoring start-up overhead, is 1.64 times higher than this
estimate of sustained performance on the real vector lengths. In actual practice,
the Linpack benchmark contains a nontrivial fraction of code that cannot be vec-
torized. Although this code accounts for less than 20% of the time before vector-
ization, it runs at less than one-tenth of the performance when counted as FLOPs.
Thus, Amdahl’s Law tells us that the overall performance will be significantly
lower than the performance estimated from analyzing the inner loop.

Since vector length has a significant impact on performance,fharid N,
measures are often used in comparing vector machines.

What is N4, for just the inner loop of DAXPY for DLXV with a 200-MHz
clock?

Using R,, as the peak rate, we want to know the vector length that will
achieve about 50 MFLOPS. We start with the formula for MFLOPS as-
suming that the measurement is made for N,,, elements:

FLOPs executed in N/ o iterations 5 Clock cycles 10~

MFLOPS = Clock cycles to execute N, ,, iterations Second 10
2xN
50 = ——% x 200
Ni/2

Simplifying this and then assuming N, < 64, so that

T,<6a = 1x64+3xn,yields
T = 8xN
Nj o 1/2
1><64+3><N1/2 = 8><Nl/2
5xN;,, = 64

N, = 128

B.6 Putting It All Together: Performance of Vector Processors B-33

EXAMPLE

ANSWER

EXAMPLE

ANSWER

So Ny = 13; that is, a vector of length 13 gives approximately one-half
the peak performance for the DAXPY loop on DLXV. .

What is the vector length, N,, such that the vector operation runs faster
than the scalar?

Again, we know that N,, < 64. The time to do one iteration in scalar mode
can be estimated as 10 + 12 + 12 + 7 + 6 +12 = 59 clockghere 10 is the
estimate of the loop overhead, known to be somewhat less than the strip-
mining loop overhead. In the last problem, we showed that this vector loop
runs in vector mode in time Tn <64 = 64 + 3 x n clock cycles. Therefore,

64+3N, = 50N
- [64

N, = | %
[l

N, =2

\

For the DAXPY loop, vector mode is faster than scalar as long as the vec-
tor has at least two elements. This number is surprisingly small, as we will
see in the next section (Fallacies and Pitfalls). .

DAXPY Performance on an Enhanced DLXV

DAXPY, like many vector problems, is memory limited. Consequently, per-
formance could be improved by adding more memory-access pipelines. This is
the major architectural difference between the CRAY X-MP (and later proces-
sors) and the CRAY-1. The CRAY X-MP has three memory pipelines, compared
with the CRAY-1's single memory pipeline, and the X-MP has more flexible
chaining. How does this affect performance?

What would be the value of Tgg for DAXPY on DLXV if we added two more
memory pipelines?

With three memory pipelines all the instructions fit in one convoy and take
one chime. The start-up overheads are the same, so

66
T66 (&J X (Tloop + Tstart) +66 x Tchime

2x(15+49) +66x1 = 194

Teo

B-34

Appendix B Vector Processors

EXAMPLE

ANSWER

With three memory pipelines, we have reduced the clock-cycle count for
sustained performance from 326 to 194, a factor of 1.7. Note the effect of
Amdahl’s Law: We improved the theoretical peak rate, as measured by
the number of chimes by a factor of 3, but only achieved an overall im-
provement of a factor of 1.7 in sustained performance. .

Another improvement could come from allowing different convoys to overlap
and also allowing the scalar loop overhead to overlap with the vector instructions.
This requires that one vector operation be allowed to begin using a functional
unit before another operation has completed and complicates the instruction issue
logic. Allowing this overlap eliminates the separate start-up overhead for every
convoy except the first and hides the loop overhead as well.

To achieve the maximum hiding of strip-mining overhead, we need to be able
to overlap strip-mined instances of the loop, allowing two instances of a convoy
as well as possibly two instances of the scalar code to be in execution simulta-
neously. This requires the same techniques we looked at in Chapter 4 to avoid
WAR hazards, although because no overlapped read and write of a single vector
element is possible, copying can be avoided. This technique, tailigating,
was used in the Cray-2. Alternatively, we could unroll the outer loop to create
several instances of the vector sequence using different register sets (assuming
sufficient registers), just as we did in Chapter 4. By allowing maximum overlap
of the convoys and the scalar loop overhead, the start-up and loop overheads will
only be seeronceper vector sequence, independent of the number of convoys
and the instructions in each convoy. In this way a processor with vector registers
can have both low start-up overhead for short vectors and high peak performance
for very long vectors.

What would be the values of R, and Tgg for DAXPY on DLXV if we added
two more memory pipelines and allowed the strip-mining and start-up
overhead to be fully overlapped?

Operations per iteration x Clock rate

R, = i —
@y I_r,nooD Clock cycles per iteration O
DTFD
lim (Clock cycl iterati = lim =—
im (Clock cycles per iteration) im 0,0

n - o n - o

B.7 Fallacies and Pitfalls B-35

Since the overhead is only seen once, Tn=n+ 49 + 15 =n + 64 Thus,

.
O _ o+ 647 _
}'z“_r.nooD”ll:| N n“_r;noo[l n 07 !
R,, = 22220 MH2 — 400 MFLOPS

Adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, Tgg = 130, SO
for shorter vectors, the sustained performance improvement is about 326/
130 = 2.5 times. .

In summary, we have examined several measures of vector performance. The-
oretical peak performance can be calculated based purely on the valygnef T
as

Number of FLOPs per iteration x Clock rate
T

chime

By including the loop overhead, we can calculate values for peak performance
for an infinite-length vector () and also for sustained performance, f& a
vector of lengtin, which is computed as

_ Number of FLOPs per iteration x n x Clock rate
n T

n

R

Using these measures we also can fipd &d N,, which give us another way of
looking at the start-up overhead for vectors and the ratio of vector to scalar speed.
A wide variety of measures of performance of vector processors are useful in
understanding the range of performance that applications may see on a vector
processor.

B.7

| Fallacies and Pitfalls
Pitfall: Concentrating on peak performance and ignoring start-up overhead.

Early vector processors such as the TI ASC and the CDC STAR-100 had long
start-up times. For some vector problemg,cduld be greater than 100! Today,

the supercomputers from Japan often have higher sustained rates than the Cra
Research processors. But with start-up overheads that are 50-100% higher, the
faster sustained rates often provide no real advantage. On the CYBER-205 the
start-up overhead for DAXPY is 158 clock cycles, substantially increasing the
break-even point. With a single vector unit, which contains 2 memory pipelines,

B-36

Appendix B Vector Processors

the CYBER-205 can sustain a rate of 2 clocks per iteration. The time for DAXPY
for a vector of length is therefore roughly 158 +2If the clock rates of the
CRAY-1 and the CYBER-205 were identical, the CRAY-1 would be faster until

n > 64. Because the CRAY-1 clock is also faster (even though the 205 is new-
er), the crossover point is over 100. Comparing a four-vector-pipeline CYBER-
205 (the maximum-size processor) with the CRAY X-MP that was delivered
shortly after the 205, the 205 completes two results per clock cycle—twice as
fast as the X-MP. However, vectors must be longer than about 200 for the
CYBER-205 to be faster. The problem of start-up overhead has been the major
difficulty for the memory-memory vector architectures, hence their lack of
popularity.

Pitfall: Increasing vector performance, without comparable increases in sca-
lar performance.

This was a problem on many early vector processors, and a place where Seymour
Cray rewrote the rules. Many of the early vector processors had comparatively
slow scalar units (as well as large start-up overheads). Even today, processors
with higher peak vector performance can be outperformed by a processor with
lower vector performance but better scalar performance. Good scalar perfor-
mance keeps down overhead costs (strip mining, for example) and reduces the
impact of Amdahl’s Law. A good example of this comes from comparing a fast
scalar processor and a vector processor with lower scalar performance. The Liv-
ermore FORTRAN kernels are a collection of 24 scientific kernels with varying
degrees of vectorization. Figure B.15 shows the performance of two different
processors on this benchmark. Despite the vector processor's higher peak perfor-
mance, its low scalar performance makes it slower than a fast scalar processor.
The next fallacy is closely related.

Processor

Minimum rate for any loop Maximum rate for any loop Harmonic mean of all 24 loops

MIPS M/120-5

0.80 MFLOPS 3.89 MFLOPS 1.85 MFLOPS

Stardent-1500

0.41 MFLOPS 10.08 MFLOPS 1.72 MFLOPS

FIGURE B.15 Performance measurements for the Livermore FORTRAN kernels on two different processors. Both

the MIPS M/120-5 and the Stardent-1500 (formerly the Ardent Titan-1) use a 16.7-MHz MIPS R2000 chip for the main CPU.
The Stardent-1500 uses its vector unit for scalar FP and has about half the scalar performance (as measured by the mini-
mum rate) of the MIPS M/120, which uses the MIPS R2010 FP chip. The vector processor is more than a factor of 2.5 times
faster for a highly vectorizable loop (maximum rate). However, the lower scalar performance of the Stardent-1500 negates
the higher vector performance when total performance is measured by the harmonic mean on all 24 loops.

Fallacy: You can get vector performance without providing memory band-

width.

B.8 Concluding Remarks B-37

As we saw with the DAXPY loop, memory bandwidth is quite important. DAXPY
requires 1.5 memory references per floating-point operation, and this ratio is typi-
cal of many scientific codes. Even if the floating-point operations took no time, a
CRAY-1 could not increase the performance of the vector sequence used, since it is
memory limited. The CRAY-1 performance on Linpack jumped when the compiler
used clever transformations to change the computation so that values could be kep
in the vector registers. This lowered the number of memory references per FLOP
and improved the performance by nearly a factor of 2! Thus, the memory band-
width on the CRAY-1 became sufficient for a loop that formerly required more
bandwidth.

88 | Concluding Remarks

In the late 1980s rapid performance increases in efficiently pipelined scalar
processors led to a dramatic closing of the gap between vector supercomputers
costing millions of dollars, and fast, pipelined, VLSI microprocessors costing
less than tens of thousands of dollars. In Chapter 1, we saw that a desk-side pro:
cessor offered nearly the performance of a vector supercomputer introduced five
years earlier for less than a tenth of the price. Comparing that processor against
its contemporary, a Cray C-90, would show a reduced price-performance advan-
tage, but still exceeding a factor of three times. While the price advantage comes
from the use of microprocessor technology, the high performance comes from the
exploitation of instruction-level parallelism in the microprocessor, which allows
CPIs to be under 1.

For scientific programs, an interesting counterpart to CPI is clock cycles per
FLOP, or CPF. We saw in this chapter that for vector processors this number was
typically in the range of 2 (for a CRAY X-MP style processor) to 4 (for a CRAY-1
style processor); a C-90 might reduce this number further but probably not below
1 to 1.5. In Chapter 4, we saw that the pipelined processor varied from about 6
(for DLX) down to about 2.5 (for a superscalar DLX with no memory system
losses running a DAXPY-type loop). For processors like an IBM Power-2 or
MIPS R8000 with multiple memory pipelines and a multiply-add instruction, this
number could be as low as 1.

In addition to the use of vectors rather than multiple issue, the other major dis-
tinction between vector machines and advanced scalar machines is the use o
vector memory systems versus caches. As we saw earlier in this appendix, vector
memory systems can have significant advantages when accesses do not have un
stride. This performance advantage, however, comes at a significant price disad-
vantage. To keep the start-up penalties of vector loads small and to keep the num-
ber of required memory banks reasonable, many high-end vector machines use
SRAM for the main memory. While SRAM has an access time several times low-
er than that of DRAM, it costs roughly 10 times as much per bit!

Recent trends in vector processor design have focused on high peak-vector
performance and multiprocessing. Meanwhile, high-speed scalar processors con-
centrate on keeping the ratio of peak to sustained performance near 1. Thus, if the

B-38

Appendix B Vector Processors

peak rates advance comparably, the sustained rates of the scalar processors will
advance more quickly, and the scalar processors will continue to close the CPF
gap. These multiple-issue scalar processors can rival or exceed the performance
of vector processors with comparable clock speeds, especially for levels of vec-
torization below 70%.

In 1994, we saw two dramatic demonstrations that the gap between vector
processors and superscalars may disappear in the future. First, microprocessors
with clock rates exceeding those of the high-end Cray C-90 appeared. Second,
microprocessors such as the MIPS R8000 (TFP) and the IBM Power-2 delivered
CPF numbers competitive with vector processors by issuing multiple memory
references and FP operations per cycle. In the near future, it is likely that design-
ers will be able to use the advances in silicon technology to achieve low CPF per-
formance while also achieving a high clock rate. At that point it may be primarily
the memory systems that distinguish vector processors from microprocessor-
based superscalars. Advances in compiler technology for cache-based systems,
such as blocking and prefetching, are closing the performance gap in the memory
system, while cache-based systems continue to have large cost advantages. New
cache organizations, such as that used in the R8000 (a large pipelined cache for
all FP data), are also helping to close the performance gap. New advances are
likely to further narrow the advantages of vector-oriented memory systems both
by reducing the performance gap and by narrowing the range of applications
where a vector memory system is better than a cache-based system. Overall, a
Cray C-90 processor has a SPECfp rating that is about 1.8 times higher than an
R8000 processor and a price almost 20 times higher. On some benchmarks, how-
ever, the C-90 is over five times faster; while on others it is about half the speed
of the R8000. Whether the range of applications for which the C-90 has a sub-
stantial performance advantage will remain large enough to justify the premium
price for vector computers remains to be seen.

B.9

| Historical Perspective and References

The first vector processors were the CDC STAR-100 (see Hintz and Tate [1972])
and the TI ASC (see Watson [1972]), both announced in 1972. Both were
memory-memory vector processors. They had relatively slow scalar units—the
STAR used the same units for scalars and vectors—making the scalar pipeline
extremely deep. Both processors had high start-up overhead and worked on vec-
tors of several hundred to several thousand elements. The crossover between sca-
lar and vector could be over 50 elements. It appears that not enough attention was
paid to the role of Amdahl’'s Law on these two processors.

Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Research
and introduced the CRAY-1 in 1976 (see Russell [1978]). The CRAY-1 used a
vector-register architecture to significantly lower start-up overhead. He also had
efficient support for nonunit stride and invented chaining. Most importantly, the

B.9 Historical Perspective and References B-39

CRAY-1 was the fastest scalar processor in the world at that time. This matching

of good scalar and vector performance was probably the most significant factor in

making the CRAY-1 a success. Some customers bought the processor primarily
for its outstanding scalar performance. Many subsequent vector processors are
based on the architecture of this first commercially successful vector processor.

Baskett and Keller [1977] provide a good evaluation of the CRAY-1.

In 1981, CDC started shipping the CYBER-205 (see Lincoln [1982]). The 205
had the same basic architecture as the STAR, but offered improved performance
all around as well as expandability of the vector unit with up to four vector pipe-
lines, each with multiple functional units and a wide load-store pipe that provided
multiple words per clock. The peak performance of the CYBER-205 greatly ex-
ceeded the performance of the CRAY-1. However, on real programs, the per-
formance difference was much smaller.

The CDC STAR processor and its descendant, the CYBER-205, were
memory-memory vector processors. To keep the hardware simple and support the
high bandwidth requirements (up to three memory references per FLOP), these
processors did not efficiently handle nonunit stride. While most loops have unit
stride, a nonunit stride loop had poor performance on these processors becaus
memory-to-memory data movements were required to gather together (and scat-
ter back) the nonadjacent vector elements; these operations used special scatte
gather instructions. In addition, there was special support for sparse vectors that
used a bit vector to represent the zeros and nonzeros and a dense vector of nor
zero values. These more complex vector operations were slow because of the
long memory latency, and it was often faster to use scalar mode for sparse or non-
unit stride operations. Schneck [1987] described several of the early pipelined
processors (e.g., Stretch) through the first vector processors, including the 205
and CRAY-1. Dongarra [1986] did another good survey, focusing on more recent
processors.

In 1983, Cray Research shipped the first CRAY X-MP (see Chen [1983]).
With an improved clock rate (9.5 ns versus 12.5 on the CRAY-1), better chaining
support, and multiple memory pipelines, this processor maintained the Cray Re-
search lead in supercomputers. The CRAY-2, a completely new design con-
figurable with up to four processors, was introduced later. A major feature of the
CRAY-2 was the use of DRAM, which made it possible to have very large memo-
ries. The first CRAY-2 with its 256 M word (60-bit words) memory contained
more memory than the total of all the Cray machines shipped to that point! The
CRAY-2 had a much faster clock than the X-MP, but also much deeper pipelines;
however, it lacked chaining, had an enormous memory latency, and had only one
memory pipe per processor. In general, the CRAY-2 is only faster than the CRAY
X-MP on problems that require its very large main memory.

The 1980s also saw the arrival of smaller-scale vector processors, called mini-
supercomputers. Priced at roughly one-tenth the cost of a supercomputer ($0.5 to
$1 million versus $5 to $10 million), these processors caught on quickly. Al-
though many companies joined the market, the two companies that were most

B-40

Appendix B Vector Processors

successful were Convex and Alliant. Convex started with a uniprocessor vector
processor (C-1) and now offers a small multiprocessor (C-2); they emphasize
Cray software capability. One of the keys to the success of Convex has been the
effectiveness of their compiler (see Figure B.12 on page B-23) and the quality of
their Unix OS implementation. The Convex example illustrates the increasing
importance of software—even in the supercomputer business. Alliant [1987] con-
centrated more on the multiprocessor aspects; they built an eight-processor com-
puter, with each processor offering vector capability. Alliant ceased operation in
the early 1990s.

In 1983, processor vendors from Japan entered the supercomputer market-
place, starting with the Fujitsu VP100 and VP200 (Miura and Uchida [1983]),
and later expanding to include the Hitachi S810 and the NEC SX/2 (see
Watanabe [1987]). These processors have proved to be close to the CRAY X-MP
in performance. In general, these three processors have much higher peak per-
formance than the CRAY X-MP. However, because of large start-up overhead,
their typical performance is often lower than the CRAY X-MP (see Figure 1.18 in
Chapter 1). The CRAY X-MP favored a multiple-processor approach, first offer-
ing a two-processor version and later a four-processor. In contrast, the three Japa-
nese processors had expandable vector capabilities.

In 1988, Cray Research introduced the CRAY Y-MP—a bigger and faster ver-
sion of the X-MP. The Y-MP allows up to eight processors and lowers the cycle
time to 6 ns. With a full complement of eight processors, the Y-MP was generally
the fastest supercomputer, though the single-processor Japanese supercomputers
may be faster than a one-processor Y-MP. In late 1989 Cray Research was split
into two companies, both aimed at building high-end processors available in the
early 1990s. Seymour Cray headed the spin-off, Cray Computer Corporation, un-
til its demise in 1995. Their initial processor, the CRAY-3, was to be implement-
ed in gallium arsenide, but they were unable to develop a reliable and cost-
effective implementation technology. The CRAY-3 was cancelled and efforts
were aimed at the CRAY-4, scheduled for delivery in 1995-96.

Cray Research focused on the C90, a new high-end processor with up to 16
processors and a clock rate of 240 MHz. This processor was delivered in 1991.
Typical configurations are about $15 million. In 1993, Cray Research introduced
their first highly parallel processor, the T3D. In 1995, they announced the avail-
ability of both a new low-end vector machine, the J90, and a high-end machine,
the T90. The T90 is much like the C90, but offers a clock that is twice as fast (500
MHz), using three-dimensional packaging and optical clock distribution. Like the
C90, the T90 costs in the tens of millions, though a single CPU is available for
$2,500,000. The J90 is a CMOS-based vector machine using DRAM memory
starting at $250,000, but with typical configurations running about $1 million. In
mid 1995, Silicon Graphics acquired Cray Research, Inc.

In the early 1980s, CDC spun out a group, called ETA, to build a new super-
computer, the ETA-10, capable of 10 gigaFLOPS. The ETA processor delivered
in the late 1980s (see Fazio [1987]) and used low-temperature CMOS in a

B.9 Historical Perspective and References B-41

configuration with up to 10 processors. Each processor retained the memory-
memory architecture based on the CYBER-205. Although the ETA-10 achieved
enormous peak performance, its scalar speed was not comparable. In 1989 CDC
the first supercomputer vendor, closed ETA and left the supercomputer design
business.

In 1986, IBM introduced the System/370 vector architecture (see Moore et al.
[1987]) and its first implementation in the 3090 Vector Facility. The architecture
extends the System/370 architecture with 171 vector instructions. The 3090/VF is
integrated into the 3090 CPU. Unlike most other vector processors, the 3090/VF
routes its vectors through the cache.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University
of lllinois. Banerjee [1979] developed the test named after him. Padua and Wolfe
[1986] gave a good overview of vectorizing compiler technology.

Benchmark studies of various supercomputers, including attempts to under-
stand the performance differences, have been undertaken by Lubeck, Moore, anc
Mendez [1985], Bucher [1983], and Jordan [1987]. In Chapter 1, we discussed
several benchmark suites aimed at scientific usage and often employed for super-
computer benchmarking, including Linpack and the Lawrence Livermore Labo-
ratories FORTRAN kernels. The University of lllinois coordinated the collection
of a set of benchmarks for supercomputers, called the Perfect Club. In 1993, the
Perfect Club was integrated into SPEC, which will release a set of benchmarks
aimed at high-end scientific processing sometime in 1995.

In less than 20 years vector processors have gone from unproven, new archi-
tectures to playing a significant role in the goal to provide engineers and scien-
tists with ever-larger amounts of computing power. The enormous price-
performance advantages of microprocessor technology may bring this era to an
end. Recently, Cray, NEC, Fuijitsu, and Convex announced and delivered large-
scale multiprocessors based on microprocessors. By using advanced superscals
microprocessors, designers can build processors that exceed the peak perfor
mance of the fastest vector processors. The challenge, as we saw in Chapter 8
lies in programming these processors. As progress is made on this front, the role
of vector processors in science and engineering may continue to decrease.

References

ALLIANT COMPUTER SYSTEMS CORP. [1987]. Alliant FX/Series: Product Summatyune), Acton,
Mass.

BANERJEE U. [1979]. Speedup of Ordinary ProgramBh.D. Thesis, Dept. of Computer Science,
Univ. of Illinois at Urbana-Champaign (October).

BASKETT, F.AND T. W. KELLER [1977].“An Evaluation of the CRAY-1 Processor,” ligh Speed
Computer and Algorithm OrganizatipB. J. Kuck, D. H. Lawrie, and A. H. Sameh, eds., Academ-
ic Press, San Diego, 724.

B-42

Appendix B Vector Processors

BUCHER I. Y. [1983]. “The computational speed of supercomputétsyt. SIGMETRICS Conf. on
Measuring and Modeling of Computer SystefA@M (August), 151-165.

CALLAHAN, D., J. DDNGARRA, AND D. LEVINE [1988]. “Vectorizing compilers: A test suite and re-
sults,” Supercomputing ‘88ACM/IEEE (November), Orlando, Fla., 98—-105.

CHEN, S. [1983]. “Large-scale and high-speed multiprocessor system for scientific applications,”
Proc. NATO Advanced Research Work on High Speed Comgiting); also in K. Hwang, ed.,
“Superprocessors: Design and applicatiofSEE (August), 1984.

DONGARRA, J. J. [1986]. “A survey of high performance process@8&MPCON, IEEEMarch), 8—

11.

Fazio, D. [1987]. “It's really much more fun building a supercomputer than it is simply inventing
one,”COMPCON, IEEHFebruary), 102105.

FLYNN, M. J. [1966]. “Very high-speed computing systeni&dc. IEEE54:12 (December), 1901—
1909.

HINTZ, R. G.AND D. P. TATE [1972]. “Control data STAR-100 processor desig@QOMPCON, IEEE
(September), 1-4.

JORDAN, K. E. [1987]. “Performance comparison of large-scale scientific processors: Scalar main-
frames, mainframes with vector facilities, and supercomputémsyiputer20:3 (March), 10-23.

Kuck, D., P. P. BDNIK, S.-C. GiEN, D. H. LAWRIE, R. A. TOWLE, R. E. SREBENDT, E. W. Davis,

JR., J. HaN, P. W. KRASKA, AND Y. MURAOKA [1974]. “Measurements of parallelism in ordinary
FORTRAN programs,Computef7:1 (January), 37—-46.

LINCOLN, N. R. [1982]. “Technology and design trade offs in the creation of a modern supercomput-
er,” IEEE Trans. on Compute3-31:5 (May), 363-376.

LuBeck, O., J. MOORE, AND R. MeENDEz [1985]. “A benchmark comparison of three super-
computers: Fujitsu VP-200, Hitachi S810/20, arkiA€ X-MP/2,” Computerl8:1 (January),
10-29.

MIRANKER, G. S., J. RBENSTEIN, AND J. SA\NGUINETTI [1988]. “Squeezing a Cray-class super-
computer into a single-user package®MPCON, IEEEMarch), 452-456.

MIURA, K. AND K. UcCHIDA [1983]. “FACOM vector processing system: VP100/2@xdc. NATO
Advanced Research Work on High Speed Compyflnge); also in K. Hwang, ed., “Super-
processors: Design and applicatio&EE (August 1984), 59-73.

MOORE B., A. PADEGS, R. SMITH, AND W. BucHOLZ [1987]. “Concepts of the System/370 vector
architecture,”Proc. 14th Symposium on Computer Architect(ihene), ACM/IEEE, Pittsburgh,
282-292.

Pabua, D. AND M. WoLFE [1986]. “Advanced compiler optimizations for supercomputeEZsinm.
ACM 29:12 (December), 1184-1201.

RUsSSELL, R. M. [1978]. “The CRAY-1 processor systertdmm. of the ACN1:1 (January), 63-72.
SCHNECK, P. B. [1987]Superprocessor ArchitecturJuwer Academic Publishers, Norwell, Mass.

SMITH, B. J. [1981]. “Architecture and applications of the HEP multiprocessor sysiema|*Time
Signal Processing 1298 (August), 241-248.

SPORER M., F. H. Moss AND C. J. MaTHAIS [1988]. “An introduction to the architecture of the
Stellar Graphics supercomputeEOMPCON, IEEEMarch), 464.

WATANABE, T. [1987]. “Architecture and performance of the NEC supercomputer SX system,”
Parallel Computings, 247—-255.

WATSON, W. J. [1972]. “The TI ASC—A highly modular and flexible super processor architecture,”
Proc. AFIPS Fall Joint Computer Con221-228.

Exercises B-43

EXERCISES

In these Exercises assume DLXV has a clock rate of 200 MHz andfljat I5. Use the
start-up times from the appendix, and assume that the store latency is always included in
the running time.

B.1 [10] <B.1,B.2> Write a DLXV vector sequence that achieves the peak MFLOPS per-
formance of the processor (use the functional unit and instruction description in
section B.2). Assuming a 200-MHz clock rate, what is the peak MFLOPS?

B.2 [20/15/15] <B.1-B.6> Consider the following vector code run on a 200-MHz version
of DLXV for a fixed vector length of 64:

Lv V1,Ra

MULTV V2, V1V3

ADDV V4,V1,V3

SV Rb,V2
SV Rc,V4

Ignore all strip-mining overhead, but assume that the store latency must be included in the
time to perform the loop. The entire sequence produces 64 results.

a. [20] <B.1-B.5> Assuming no chaining and a single memory pipeline, how many
chimes are required? How many clock cycles per result (including both stores as one
result) does this vector sequence require, including start-up overhead?

b. [15] <B.1-B.5> If the vector sequence is chained, how many clock cycles per result
does this sequence require, including overhead?

c. [15] <B.1-B.6> Suppose DLXV had three memory pipelines and chaining. If there
were no bank conflicts in the accesses for the above loop, how many clock cycles are
required per result for this sequence?

B.3 [20/20/15/15/20/20/20] <B.2-B.6> Consider the following FORTRAN code:

do 10i=1,n
A(i) = A(i) + B(i)
B(i) = x * B(i)
10 continue

Use the techniques of section B.6 to estimate performance throughout this Exercise, assum-
ing a 200-MHz version of DLXV.

a. [20] <B.2-B.6> Write the best DLXV vector code for the inner portion of the loop.
Assumex is in FO and the addressesacdindB are inRa andRb, respectively.

b. [20] <B.2-B.6> Find the total time for this loop on DLXV,Jl. What is the MFLOP
rating for the loop (Ryo?

c. [15] <B.2-B.6> Find R for this loop.
d. [15] <B.2-B.6> Find N, for this loop.

e. [20] <B.2-B.6> Find W for this loop. Assume the scalar code has been pipeline
scheduled so that each memory reference takes six cycles and each FP operation take
three cycles. Assume the scalar overhead is gigg T

B-44

Appendix B Vector Processors

f. [20] <B.2-B.6> Assume DLXV has two memory pipelines. Write vector code that
takes advantage of the second memory pipeline. Show the layout in convoys.

g. [20] <B.2-B.6> Computehgand Rggfor DLXV with two memory pipelines.

B.4 [20/10] <B.3> Suppose we have a version of DLXV with eight memory banks (each a
double word wide) and a memory-access time of eight cycles.

a. [20] <B.3> If a load vector of length 64 is executed with a stride of 20 double words,
how many cycles will the load take to complete?

b. [10] <B.3> What percentage of the memory bandwidth do you achieve on a 64-
element load at stride 20 versus stride 1?

B.5 [12/12] <B.4-B.6> Consider the following loop:

C=0.0
do 10i=1,64
A(i) = A(i) + B(i)
C=C+A()
10 continue

a. [12] <B.4-B.6> Split the loop into two loops: one with no dependence and one with a
dependence. Write these loops in FORTRAIS a source-to-source transformation.
This optimization is calletbop fission.

b. [12] <B.4-B.6> Write the DLXV vector code for the loop without a dependence.

B.6 [20/15/20/20] <B.4-B.6> The compiled Linpack performance of the CRAY-1 (de-
signed in 1976) was almost doubled by a better compiler in 1989. Let's look at a simple ex-
ample of how this might occur. Consider the DAXPY-like loop (wlkeigea parameter to

the procedure containing the loop):

do 10i=1,64
do 10j=1,64
Ykj)=a *X(ij) + Y(k))
10 continue

a. [20] <B.4-B.6> Write thetraightforwardcode sequence for just the inner loop in
DLXV vector instructions.

b. [15] <B.4-B.6> Using the techniques of section B.6, estimate the performance of this
code on DLXV by finding §4in clock cycles. You may assume thgjof of overhead
is incurred for each iteration of the outer loop. What limits the performance?

c. [20] <B.4-B.6> Rewrite the DLXV code to reduce the performance limitation; show
the resulting inner loop in DLXV vector instructionblirft: Think about what estab-
lishes Thime can you affect it?) Find the total time for the resulting sequence.

d. [20] <B.4-B.6> Estimate the performance of your new version, using the techniques
of section B.6 and findingg.

B.7 [15/15/25] <B.5>Consider the following code.

do 10i=1,64
if (B(i) .ne. 0) then
A() = A() / B(i)
10 continue

Exercises B-45

Assume that the addresses\@ndB are inRa andrb, respectively, and that FO contains 0.
a. [15] <B.5> Write the DLXV code for this loop using the vector-mask capability.
b. [15] <B.5> Write the DLXV code for this loop using scatter-gather.

c. [25] <B.5> Estimate the performance din clock cycles) of these two vector loops,
assuming a divide latency of 20 cycles. Assume that all vector instructions run at one
result per clock, independent of the setting of the vector-mask register. Assume that
50% of the entries & are 0. Considering hardware costs, which would you build if
the above loop were typical?

B.8 [15/20/15/15] <B.1-B.6> Ifrallacies and Pitfallof Chapter 1, we saw that the dif-
ference between peak and sustained performance could be large: For one problem, a Hita:
chi S810 had a peak speed twice as high as that of the CRAY X-MP, while for another more
realistic problem, the CRAY X-MP was twice as fast as the Hitachi processor. Let's exam-
ine why this might occur using two versions of DLXV and the following code sequences:

C Code sequence 1

do 10i=1,10000
Aly=x = Al+y = A

10 continue
C Code sequence 2
do 10i=1,100
A(i) = x * A()
10 continue

Assume there is a version of DLXV (call it DLXVII) that has two copies of every floating-
point functional unit with full chaining among them. Assume that both DLXV and DLXVII
have two load-store units. Because of the extra functional units and the increased complex-
ity of assigning operations to units, all the overhea%%p(ﬁnd 'I;tar? are doubled.

a. [15] <B.1-B.6> Find the number of clock cycles for code sequence 1 on DLXV.

[20] <B.1-B.6> Find the number of clock cycles on code sequence 1 for DLXVII.
How does this compare to DLXV?

c. [15] <B.1-B.6> Find the number of clock cycles on code sequence 2 for DLXV.

d. [15] <B.1-B.6> Find the number of clock cycles on code sequence 2 for DLXVII.
How does this compare to DLXV?

B.9 [20] <B.4> Here is a tricky piece of code with two-dimensional arrays. Does this loop
have dependences? Can these loops be written so they are parallel? If so, how? Rewrite th
sourcecode so that it is clear that the loop can be vectorized, if possible.
do 290j=2,n
do 290i=2j
aa(i,j)= aa(i-1,j) * aa(i-1,j)+bb(i,j)
290 continue

B-46

Appendix B Vector Processors

B.10 [12/15] <B.4>Consider the following loop:
do10i=2,n
A() =B
10 C(i) = AGi-1)

a. [12] <B.4> Show there is a loop-carried dependence in this code fragment.

b. [15] <B.4> Rewrite the code in FORTRAN so that it can be vectorized as two separate
vector sequences.

B.11 [15/25] <B.4> As we saw in Chapter 4 and in section B.4, some loop structures are
not easily vectorized. One common structure isdaiction—a loop that reduces an array

to a single value by repeated application of an operation. This is a special case of a recur-
rence. A common example occurs in dot product:

dot = 0.0
do 10i=1,64
10 dot = dot + A(i) * B()

This loop has an obvious loop-carried dependencedbhand cannot be vectorized in a
straightforward fashion. The first thing a good vectorizing compiler would do is split the
loop to separate out the vectorizable portion and the recurrence and perhaps rewrite the loop
as

do 10i=1,64
10 dot(i) = A(i) * B(i)
do 20i=2,64
20 dot(1) = dot(1) + dot(i)

The variabledot has been expanded into a vector; this transformation is caldar ex-
pansion We can try to vectorize the second loop either relying strictly on the compiler (part
(a), or with hardware support as well, part (b)). There is an important caveat in the use of
vector techniques for reduction. To make reduction work, we are relying on the associativ-
ity of the operator being used for the reduction. Because of rounding and finite range, how-
ever, floating-point arithmetic is not strictly associative. For this reason, most compilers
require the programmer to indicate whether associativity can be used to more efficiently
compile reductions.

a. [15] <B.4> One simple scheme for compiling the loop with the recurrence is to add
sequences of progressively shorter vectors—two 32-element vectors, then two 16-
element vectors, and so on. This technique has been cati@dive doublinglt is
faster than doing all the operations in scalar mode. Show how the FORTRAN code
would look for execution of the second loop in the code fragment above using recur-
sive doubling.

Exercises B-47

b. [25] <B.4>In some vector processors, the vector registers are addressable, and the op
erands to a vector operation may be two different parts of the same vector register.
This allows another solution for the reduction, calpedtial sums The key idea in
partial sums is to reduce the vectontsums wherenis the total latency through the
vector functional unit, including the operand read and write times. Assume that the
DLXV vector registers are addressable (e.g., you can initiate a vector operation with
the operand V1(16), indicating that the input operand began with element 16). Also,
assume that the total latency for adds, including operand read and write, is eight cy-
cles. Write a DLXV code sequence that reduces the contents of V1 to eight partial
sums. It can be done with one vector operation.

B.12 [40] <B.2-B.5> Extend the DLX simulator to be a DLXV simulator, including the
ability to count clock cycles. Write some short benchmark programs in DLX and DLXV
assembly language. Measure the speedup on DLXV, the percentage of vectorization, and
usage of the functional units.

B.13 [50] <B.4> Modify the DLX compiler to include a dependence checker. Run some
scientific code and loops through it and measure what percentage of the statements coulc
be vectorized.

B.14 [Discussion] Some proponents of vector processors might argue that the vector pro-

cessors have provided the best path to ever-increasing amounts of processor power by fo:
cusing their attention on boosting peak vector performance. Others would argue that the
emphasis on peak performance is misplaced because an increasing percentage of the prc
grams are dominated by nonvector performance. (Remember Amdahl’s Law?) The propo-

nents would respond that programmers should work to make their programs vectorizable.

What do you think about this argument?

B.15 [Discussion] Consider the points raiseddoncluding Remarkésection B.8). This
topic—the relative advantages of pipelined scalar processors versus FP vector processors—
is the source of much debate in the 1990s. What advantages do you see for each side? Wh
would you do in this situation?

	Vector Processors
	I’m certainly not inventing vector processors. There are three kinds that I know of existing toda...

	Seymour Cray Public Lecture at Lawrence Livermore Laboratories on the Introduction of the CRAY-1 ...
	B.1 Why Vector Processors? �B-1
	B.2 Basic Vector Architecture �B-3
	B.3 Two Real-World Issues: Vector Length and Stride �B-15
	B.4 Effectiveness of Compiler Vectorization �B-22
	B.5 Enhancing Vector Performance �B-23
	B.6 Putting It All Together: Performance of Vector Processors �B-29
	B.7 Fallacies and Pitfalls �B-35
	B.8 Concluding Remarks �B-37
	B.9 Historical Perspective and References �B-38
	Exercises �B-43
	B.1
	Why Vector Processors?
	In Chapters 3 and 4 we looked at pipelining and exploitation of instruction-level parallelism in ...
	Clock cycle time—The clock cycle time can be decreased by making the pipelines deeper, but a deep...
	Instruction fetch and decode rate—This obstacle, sometimes called the Flynn bottleneck (based on ...
	The dual limitations imposed by deeper pipelines and issuing multiple instruc�tions can be viewed...
	High-speed, pipelined processors are particularly useful for large scientific and engineering app...
	Vector processors provide high-level operations that work on vec�tors—linear arrays of numbers. A...
	Vector instructions have several important properties that solve most of the problems mentioned a...
	The computation of each result is independent of the computation of previous results, allowing a ...
	A single vector instruction specifies a great deal of work—it is equivalent to executing an entir...
	Vector instructions that access memory have a known ac�cess pattern. If the vector’s elements are...
	Because an entire loop is replaced by a vector in�struction whose behavior is predetermined, cont...
	For these reasons, vector operations can be made faster than a se�quence of scalar operations on ...
	As mentioned above, vector processors pipeline the operations on the individ�ual elements of a ve...
	B.2
	Basic Vector Architecture
	A vector processor typically consists of an ordinary pipelined scalar unit plus a vector unit. Al...
	There are two primary types of architectures for vector processors: vector- regis�ter processors ...
	We begin with a vector-register processor consisting of the pri�mary com�ponents shown in Figure ...
	FIGURE B.1� The basic structure of a vector-register architecture, DLXV. This processor has a sca...

	The primary components of the instruction set architecture of DLXV are
	Vector registers—Each vector register is a fixed-length bank holding a single vector. DLXV has ei...
	Vector functional units—Each unit is fully pipelined and can start a new operation on every clock...
	Vector load-store unit—This is a vector memory unit that loads or stores a vector to or from memo...
	A set of scalar registers—Scalar registers can also provide data as input to the vector functiona...
	Figure B.2 shows the characteristics of some typical vector processors, including the size and co...
	Processor
	Year announced
	Clock rate (MHz)
	Registers
	Elements per register (64-bit elements)
	Func�tional units
	Load-store units
	CRAY-1
	1976
	80
	8
	64
	6: add, multiply, reciprocal, �integer add, �logical, shift
	1
	CRAY X-MP CRAY Y-MP
	1983 1988
	120 166
	8
	64
	8: FP add, FP multiply, FP reciprocal, �integer add, 2 logical, shift, population count/parity
	2 loads 1 store
	CRAY-2
	1985
	166
	8
	64
	5: FP add, FP multiply, FP reciprocal/sqrt, integer (add shift, population count), logical
	1
	Fujitsu VP100/200
	1982
	133
	8–256
	32–1024
	3: FP or integer add/logical, multiply, divide
	2
	Hitachi S810/820
	1983
	71
	32
	256
	4: 2 integer add/logical, 1 multiply-add, and 1 multiply/ divide–add unit
	4
	Convex C-1
	1985
	10
	8
	128
	4: multiply, add, divide, integer/ logical
	1
	NEC SX/2
	1984
	160
	8 + 8192
	256 variable
	16: 4 integer add/logical, 4 FP multiply/divide, 4 FP add, 4 shift
	8
	DLXV
	1990
	200
	8
	64
	5: multiply, divide, add, integer add, logical
	1
	Cray C-90
	1991
	240
	8
	128
	8: FP add, FP multiply, FP reciprocal, �integer add, 2 logical, shift, population count/parity
	4
	Convex C-4
	1994
	135
	16
	128
	3: each is full integer, logical, and FP (including multiply-add)
	NEC SX/4
	1995
	400
	8 + 8192
	256 variable
	16: 4 integer add/logical, 4 FP multiply/divide, 4 FP add, 4 shift
	8
	Cray J-90
	1995
	100
	8
	64
	4: FP add, FP multiply, FP reciprocal, integer/logical
	Cray T-90
	1996
	~500
	8
	128
	8: FP add, FP multiply, FP reciprocal, �integer add, 2 logical, shift, population count/parity
	4
	FIGURE B.2� Characteristics of several vector-register architectures. The vector functional units...

	In DLXV, vector operations use the same names as DLX operations, but with the letter “V” appended...
	Instruction
	Operands
	Function
	ADDV
	ADDSV
	V1,V2,V3
	V1,F0,V2
	Add elements of V2 and V3, then put each result in V1.
	Add F0 to each element of V2, then put each result in V1.
	SUBV
	SUBVS
	SUBSV
	V1,V2,V3
	V1,V2,F0
	V1,F0,V2
	Subtract elements of V3 from V2, then put each result in V1.
	Subtract F0 from elements of V2, then put each result in V1.
	Subtract elements of V2 from F0, then put each result in V1.
	MULTV
	MULTSV
	V1,V2,V3
	V1,F0,V2
	Multiply elements of V2 and V3, then put each result in V1.
	Multiply F0 by each element of V2, then put each result in V1.
	DIVV
	DIVVS
	DIVSV
	V1,V2,V3
	V1,V2,F0
	V1,F0,V2
	Divide elements of V2 by V3, then put each result in V1.
	Divide elements of V2 by F0, then put each result in V1.
	Divide F0 by elements of V2, then put each result in V1.
	LV
	V1,R1
	Load vector register V1 from memory starting at address R1.
	SV
	R1,V1
	Store vector register V1 into memory starting at address R1.
	LVWS
	V1,(R1,R2)
	Load V1 from address at R1 with stride in R2, i.e., R1+i ¥ R2.
	SVWS
	(R1,R2),V1
	Store V1 from address at R1 with stride in R2, i.e., R1+i ¥ R2.
	LVI
	V1,(R1+V2)
	Load V1 with vector whose elements are at R1+V2(i), i.e., V2 is an index.
	SVI
	(R1+V2),V1
	Store V1 to vector whose elements are at R1+V2(i), i.e., V2 is an index.
	CVI
	V1,R1
	Create an index vector by storing the values 0, 1 ¥ R1, 2 ¥ R1,...,63 ¥ R1 into V1.
	S--V
	S--SV
	V1,V2
	F0,V1
	Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put a 1 in the ...
	POP
	R1,VM
	Count the 1s in the vector-mask register and store count in R1.
	CVM
	Set the vector-mask register to all 1s.
	MOVI2S
	MOVS2I
	VLR,R1
	R1,VLR
	Move contents of R1 to the vector-length register.
	Move the contents of the vector-length register to R1.
	MOVF2S
	MOVS2F
	VM,F0
	F0,VM
	Move contents of F0 to the vector-mask register.
	Move contents of vector-mask register to F0.
	FIGURE B.3� The DLXV vector instructions. Only the double-precision FP operations are shown. In a...

	A vector processor is best understood by looking at a vector loop on DLXV. Let’s take a typical v...
	Y = a ¥ X + Y
	X and Y are vectors, initially resident in memory, and a is a scalar. This is the so- called SAXP...
	For now, let us assume that the number of elements, or length, of a vec�tor register (64) matches...
	EXAMPLE Show the code for DLX and DLXV for the DAXPY loop. Assume that the start�ing addresses of...

	ANSWER Here is the DLX code.
	LD F0,a ADDI R4,Rx,#512 ;last address to load Loop: LD F2,0(Rx) ;load X(i) MULTD F2,F0,F2 ;a ¥ X(...
	Here is the code for DLXV for DAXPY.
	LD F0,a ;load scalar a LV V1,Rx ;load vector X MULTSV V2,F0,V1 ;vector-scalar multiply LV V3,Ry ;...
	There are some interesting comparisons between the two code segments in this Example. The most dr...
	Another impor�tant difference is the frequency of pipeline interlocks. In the straightforward DLX...
	Vector Execution Time

	The execution time of a sequence of vector operations primarily depends on three factors: the len...
	To simplify the discussion of vector execution and its timing, we will use the notion of a convoy...
	Accompanying the notion of a convoy is a timing metric, called a chime, that can be used for esti...
	If we know the number of convoys in a vector sequence, we know the execution time in chimes. One ...
	EXAMPLE Show how the following code sequence lays out in convoys, assuming a single copy of each ...

	LV V1,Rx ;load vector X MULTSV V2,F0,V1 ;vector-scalar multiply LV V3,Ry ;load vector Y ADDV V4,V...
	How many chimes will this vector sequence take? How many chimes per FLOP (floating-point operatio...
	ANSWER The first convoy is occupied by the first LV instruction. The MULTSV is dependent on the f...
	1. LV
	2. MULTSV ��LV
	3. ADDV
	4. SV
	The sequence requires four convoys and hence takes four chimes. Note that although we allow the M...
	The chime approximation is reasonably accurate for long vectors. For example, for 64-element vect...
	Another source of overhead is far more significant than the issue limitation. The most important ...
	EXAMPLE Assume the start-up overhead for functional units is shown in Figure B.4.

	Unit
	Start-up overhead
	Load and store unit
	12 cycles
	Multiply unit
	7 cycles
	Add unit
	6 cycles
	FIGURE B.4� Start-up overhead.

	Show the time that each convoy can begin and the total number of cycles needed. How does the time...
	ANSWER Figure B.5 provides the answer in convoys, assuming that the vector length is n:
	Convoy
	Starting time
	First-result time
	Last-result time
	1. LV
	0
	12
	11 + n
	2. MULTSV LV
	12 + n
	12 + n + 12
	23 + 2n
	3. ADDV
	24 + 2n
	24 + 2n + 6
	29 + 3n
	4. SV
	30 + 3n
	30 + 3n + 12
	41 + 4n
	FIGURE B.5� Starting times and first- and last-result times for convoys 1 through 4. The vector l...

	One tricky question is when we assume the vector sequence is done; this determines whether the st...
	The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock cycles, while the chime...
	For simplicity, we will use the chime approximation for running time, incorporating start-up time...
	Start-up time for an instruction comes from the pipeline depth for the functional unit implementi...
	For example, if an opera�tion takes 10 clock cycles, it must be pipelined 10 deep to achieve an i...
	For DLXV, we will use the same pipeline depths as the CRAY-1, though more modern processors might...
	Operation
	Start-up penalty
	Vector add
	6
	Vector multiply
	7
	Vector divide
	20
	Vector load
	12
	FIGURE B.6� Start-up penalties on DLXV. These are the start-up penalties in clock cycles for DLXV...
	Vector Load-Store Units and Vector Memory Systems

	The behavior of the load-store vector unit is significantly more complicated than that of the ari...
	Typically, penalties for start-ups on load-store units are higher than those for arithmetic funct...
	To maintain an initiation rate of one word fetched or stored per clock, the memory system must be...
	Most vector processors use memory banks rather than simple interleaving for two primary reasons:
	1. Many vector computers support multiple loads or stores per clock. To support multiple simultan...
	2. As we will see in the next section, many vector processors support the ability to load or stor...

	In Chapter 5 we saw that the desired access rate and the bank access time determined how many ban...
	EXAMPLE Suppose we want to fetch a vector of 64 elements starting at byte ad�dress 136, and a mem...

	ANSWER Six clocks per access require at least six banks, but because we want the number of banks ...
	Beginning
	Bank
	at clock no.
	0
	1
	2
	3
	4
	5
	6
	7
	0
	192
	136
	144
	152
	160
	168
	176
	184
	6
	256
	200
	208
	216
	224
	232
	240
	248
	14
	320
	264
	272
	280
	288
	296
	304
	312
	22
	384
	328
	336
	344
	352
	360
	368
	376
	FIGURE B.7� Memory addresses (in bytes) by bank number and time slot at which access begins. The ...

	 Figure�B.8 shows the timing for the first few sets of accesses for an eight-bank system with a ...
	FIGURE B.8� Access timing for the first 64 double-precision words of the load. After the six-cloc...

	The number of banks in the memory system and the pipeline depth in the functional units are essen...
	B.3
	Two Real-World Issues: Vector Length and Stride
	This section deals with two issues that arise in real programs: What do you do when the vector le...
	Vector-Length Control

	A vector-register processor has a natural vector length determined by the number of elements in e...
	do 10 i = 1,n 10 Y(i) = a * X(i) + Y(i)
	The size of all the vector operations depends on n, which may not even be known until runtime! Th...
	The solution to these problems is to create a vector-length register (VLR). The VLR controls the ...
	What if the value of n is not known at compile time, and thus may be greater than MVL? To tackle ...
	low = 1 VL = (n mod MVL) /*find the odd size piece*/ do 1 j = 0,(n / MVL) /*outer loop*/ do 10 i ...
	The term n/MVL represents truncating integer divi�sion (which is what Fortran does) and is used t...
	FIGURE B.9� A vector of arbitrary length processed with strip mining. All blocks but the first ar...

	The inner loop of the code above is vectorizable with length VL, which is equal to either (n mod ...
	In addition to the start-up overhead, we need to account for the overhead of executing the strip-...
	There are two key factors that contribute to the running time of a strip-mined loop consisting of...
	1. The number of convoys in the loop, which determines the number of chimes. We use the notation ...
	2. The overhead for each strip-mined sequence of convoys. This over�head consists of the cost of ...

	There may also be a fixed overhead associated with setting up the vector sequence the first time....
	The components can be used to state the total running time for a vector sequence operating on a v...
	The values of Tstart, Tloop, and Tchime are compiler and processor dependent. The register alloca...
	For simplicity, we will use a constant value for Tloop on DLXV. Based on a variety of measurement...
	EXAMPLE What is the execution time on DLXV for the vector operation A = B ¥ s, where s is a scala...

	ANSWER Assume the addresses of A and B are initially in Ra and Rb, s is in Fs, and recall that fo...
	ADDI R2,R0,#1600 ;total # bytes in vector ADD R2,R2,Ra ;address of the end of A vector ADDI R1,R0...
	The three vector instructions in the loop are dependent and must go into three convoys, hence Tch...
	The value of Tstart is the sum of
	The vector load start-up of 12 clock cycles
	A seven-clock-cycle start-up for the multiply
	A 12-clock-cycle start-up for the store.
	Thus, the value of Tstart is given by
	So, the overall value becomes
	The execution time per element with all start-up costs is then 784/200 = 3.9, compared with a chi...
	Figure�B.10 shows the overhead and effective rates per element for the above example (A = B ¥ s) ...
	The next few sections introduce enhancements that reduce this time. We will see how to reduce the...
	FIGURE B.10� This shows the total execution time per element and the total over�head time per ele...
	Vector Stride

	The second problem this section addresses is that the position in memory of adjacent elements in ...
	do 10 i = 1,100 do 10 j = 1,100 A(i,j) = 0.0 do 10 k = 1,100 10 A(i,j) = A(i,j)+B(i,k)*C(k,j)
	At the statement labeled 10 we could vectorize the multiplication of each row of B with each colu...
	To do so, we must consider how adjacent elements in B and adjacent ele�ments in C are addressed. ...
	This distance separating elements that are to be gathered into a single register is called the st...
	Once a vector is loaded into a vector register it acts as if it had logically adja�cent elements....
	On DLXV, where the addressable unit is a byte, the stride for our example would be 800. The value...
	Complications in the memory system can occur from supporting strides greater than one. In Chapter...
	EXAMPLE Suppose we have 16 memory banks with a read latency of 12 clocks. How long will it take t...

	ANSWER Since the number of banks is larger than the read latency, for a stride of 1, the load wil...
	Memory bank conflicts will not occur if the stride and number of banks are relatively prime with ...
	B.4
	Effectiveness of Compiler Vectorization
	Two factors affect the success with which a program can be run in vector mode. The first factor i...
	As an indication of the level of vectorization that can be achieved in scientific programs, let's...
	Benchmark name
	FP operations
	FP operations executed in vector mode
	ADM
	23%
	68%
	DYFESM
	26%
	95%
	FLO52
	41%
	100%
	MDG
	28%
	27%
	MG3D
	31%
	86%
	OCEAN
	28%
	58%
	QCD
	14%
	1%
	SPICE
	16%
	7%
	TRACK
	9%
	23%
	TRFD
	22%
	10%
	FIGURE B.11� Level of vectorization among the Perfect Club benchmarks when executed on the CRAY X...

	There is also tremendous variation in how well compilers do in vectorizing programs. As a summary...
	Processor
	Compiler
	Completely vectorized
	Partially vectorized
	Not vectorized
	CDC Cyber-205
	VAST-2 V2.21
	62
	5
	33
	Convex C-series
	FC5.0
	69
	5
	26
	CRAY X-MP
	CFT77 V3.0
	69
	3
	28
	CRAY X-MP
	CFT V1.15
	50
	1
	49
	CRAY-2
	CFT2 V3.1a
	27
	1
	72
	ETA-10
	FTN 77 V1.0
	62
	7
	31
	Hitachi S810/820
	FORT77/HAP V20-2B
	67
	4
	29
	IBM 3090/VF
	VS Fortran V2.4
	52
	4
	44
	NEC SX/2
	FORTRAN77 / SX V.040
	66
	5
	29
	FIGURE B.12� Result of applying vectorizing compilers to the 100 Fortran test kernels. For each p...

	B.5
	Enhancing Vector Performance
	Three techniques for improving the per�formance of vector processors are discussed in this sectio...
	Chaining—The Concept of Forwarding Extended to Vector Registers

	Consider the simple vector sequence
	MULTV V1,V2,V3 ADDV V4,V1,V5
	In DLXV, as it currently stands, these two instructions must be put into two separate convoys, si...
	Even though a pair of operations depend on one another, chaining allows the opera�tions to procee...
	Figure�B.13 shows the timing of a chained and an unchained version of the above pair of vector in...
	FIGURE B.13� Timings for a sequence of dependent vector operations ADDV and MULTV, both unchained...

	Although chaining allows us to reduce the chime component of the execution time by putting two de...
	We will see in section�B.6 that chaining plays a major role in boosting vector performance. In fa...
	Conditionally Executed Statements

	In the last section, we saw that many programs only achieved low to moderate levels of vectorizat...
	Consider the following loop:
	do 100 i = 1, 64 if (A(i).ne. 0) then A(i) = A(i) – B(i) endif 100 continue
	This loop cannot normally be vectorized because of the condi�tional execution of the body; howeve...
	The extension that is commonly used for this capability is vector-mask �control. The vector-mask ...
	LV V1,Ra ;load vector A into V1 LV V2,Rb ;load vector B LD F0,#0 ;load FP zero into F0 SNESV F0,V...
	Most recent vector processors provide vector-mask control. The vector-mask capability described h...
	Using a vector-mask register does, however, have disadvan�tages. When we examined conditionally e...
	Second, in some vector processors the vector mask serves only to disable the storing of the resul...
	Sparse Matrices

	There are techniques for allowing programs with sparse matrices to execute in vector mode. In a s...
	do 100 i = 1,n 100 A(K(i)) = A(K(i)) + C(M(i))
	This code implements a sparse vector sum on the arrays A and C, using index vectors K and M to de...
	A primary mechanism for supporting sparse matrices is scatter-gather operations �using index vect...
	LV Vk,Rk ;load K LVI Va,(Ra+Vk) ;load A(K(I)) LV Vm,Rm ;load M LVI Vc,(Rc+Vm) ;load C(M(I)) ADDV ...
	This technique allows code with sparse matrices to be run in vector mode. The source code above w...
	A scatter-gather capability is included on many of the recent supercomputers. Such operations rar...
	The indexed loads-stores and the CVI instruction provide an alternative method to support conditi...
	LV V1,Ra ;load vector A into V1 LD F0,#0 ;load FP zero into F0 SNESV F0,V1 ;sets the VM to 1 if V...
	Whether the implementation using scatter-gather is better than the condition�ally executed versio...
	We want Time1 ³ Time2, so
	That is, the second method is faster if less than one-quarter of the elements are nonzero. In man...
	B.6
	Putting It All Together: Performance of Vector Processors
	In this section we look at different measures of performance for vector processors and what they ...
	In this section we examine the performance of DLXV on our DAXPY loop by looking at performance fr...
	Measures of Vector Performance

	Because vector length is so important in establishing the perfor�mance of a processor, length-rel...
	r°—The MFLOPS rate on an infinite-length vector. Although this measure may be of interest� when e...
	n1/2—The vector length needed to reach one-half of r°. This is a good measure of the impact of ov...
	nv—The vector length needed to make vector mode faster than scalar mode. This measures both overh...
	Let’s look at these measures for our DAXPY problem running on DLXV. When chained, the inner loop ...
	LV V1,Rx
	MULTSV V2,F0,V1
	Convoy 1: chained load and multiply
	LV V3,Ry
	ADDV V4,V2,V3
	Convoy 2: second load and ADD, chained
	SV Ry,V4
	Convoy 3: store the result
	FIGURE B.14� The chained inner loop of the DAXPY code in convoys.

	Recall our performance equation for the execution time of a vector loop with n elements, Tn:
	Chaining allows the loop to run in three chimes (and no less, since there is one memory pipeline)...
	The Peak Performance of DLXV on DAXPY

	First, we should determine what the peak performance, r°, really is, since we know it must differ...
	Using MVL = 64, Tloop = 15, Tstart= 49, and Tchime = 3 in the performance equation, and assuming ...
	The sustained rate is actually over 4 clock cycles per iteration, rather than the theoretical rat...
	We can now compute r° for a 200-MHz clock as
	The numerator is independent of n, hence
	The performance without the start-up overhead, which is the peak performance given the vector fun...
	Sustained Performance of DLXV on the Linpack Benchmark

	The Linpack benchmark is a Gaussian elimination on a 100 ¥ 100 matrix. Thus, the vector element l...
	Now we can obtain an accurate estimate of the performance of DAXPY using a vector length of 66.
	The peak number, ignoring start-up overhead, is 1.64 times higher than this estimate of sustained...
	Since vector length has a significant impact on performance, the n1/2 and nv measures are often u...
	EXAMPLE What is n1/2 for just the inner loop of DAXPY for DLXV with a 200-MHz clock?

	ANSWER Using r° as the peak rate, we want to know the vector length that will achieve about 50 MF...
	Simplifying this and then assuming N1/2 ² 64, so that , yields
	So n1/2 = 13; that is, a vector of length 13 gives approximately one-half the peak performance fo...
	EXAMPLE What is the vector length, nv, such that the vector operation runs faster than the scalar?

	ANSWER Again, we know that nv < 64. The time to do one iteration in scalar mode can be estimated ...
	For the DAXPY loop, vector mode is faster than scalar as long as the vector has at least two elem...
	DAXPY Performance on an Enhanced DLXV

	DAXPY, like many vector problems, is memory limited. Consequently, per�formance could be improved...
	EXAMPLE What would be the value of T66 for DAXPY on DLXV if we added two more memory pipelines?

	ANSWER With three memory pipelines all the instructions fit in one convoy and take one chime. The...
	With three memory pipelines, we have reduced the clock-cycle count for sus�tained performance fro...
	Another improvement could come from allowing different convoys to overlap and also allowing the s...
	To achieve the maximum hiding of strip-mining overhead, we need to be able to overlap strip-mined...
	EXAMPLE What would be the values of r° and T66 for DAXPY on DLXV if we added two more memory pipe...

	ANSWER
	Since the overhead is only seen once, Tn = n + 49 + 15 = n + 64. Thus,
	Adding the extra memory pipelines and more flexible issue logic yields an improvement in peak per...
	In summary, we have examined several measures of vector performance. Theoretical peak performance...
	By including the loop overhead, we can calculate values for peak performance for an infinite-leng...
	Using these measures we also can find N1/2 and Nv, which give us another way of looking at the st...
	B.7
	Fallacies and Pitfalls
	Early vector processors such as the TI ASC and the CDC STAR-100 had long start-up times. For some...
	This was a problem on many early vector processors, and a place where Seymour Cray rewrote the ru...
	Processor
	Minimum rate for any loop
	Maximum rate for any loop
	Harmonic mean of all 24 loops
	MIPS M/120-5
	0.80 MFLOPS
	3.89 MFLOPS
	1.85 MFLOPS
	Stardent-1500
	0.41 MFLOPS
	10.08 MFLOPS
	1.72 MFLOPS
	FIGURE B.15� Performance measurements for the Livermore FORTRAN kernels on two different processo...

	As we saw with the DAXPY loop, memory bandwidth is quite impor�tant. DAXPY requires 1.5 memory re...
	B.8
	Concluding Remarks
	In the late 1980s rapid performance increases in efficiently pipelined scalar �processors led to ...
	For scientific programs, an interesting counterpart to CPI is clock cycles per FLOP, or CPF. We s...
	In addition to the use of vectors rather than multiple issue, the other major distinction between...
	Recent trends in vector processor design have focused on high peak-vector performance and multipr...
	In 1994, we saw two dramatic demonstrations that the gap between vector processors and superscala...
	B.9
	Historical Perspective and References
	The first vector processors were the CDC STAR-100 (see Hintz and Tate [1972]) and the TI ASC (see...
	Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Research and introduced the CRAY-1...
	In 1981, CDC started shipping the CYBER-205 (see Lincoln [1982]). The 205 had the same basic arch...
	The CDC STAR processor and its descendant, the CYBER-205, were �memory-�memory vector processors....
	In 1983, Cray Research shipped the first CRAY X-MP (see Chen [1983]). With an improved clock rate...
	The 1980s also saw the arrival of smaller-scale vector processors, called mini- supercomputers. P...
	In 1983, processor vendors from Japan entered the supercomputer market�place, starting with the F...
	In 1988, Cray Research introduced the CRAY Y-MP—a bigger and faster version of the X-MP. The Y-MP...
	Cray Research focused on the C90, a new high-end processor with up to 16 processors and a clock r...
	In the early 1980s, CDC spun out a group, called ETA, to build a new supercomputer, the ETA-10, c...
	In 1986, IBM introduced the System/370 vector architecture (see Moore et al. [1987]) and its firs...
	The basis for modern vectorizing compiler technology and the notion of data dependence was develo...
	Benchmark studies of various supercomputers, including attempts to under�stand the performance di...
	In less than 20 years vector processors have gone from un�proven, new architectures to playing a ...
	References

	Alliant Computer Systems Corp. [1987]. Alliant FX/Series: Product Summary (June), Acton, Mass.
	Banerjee, U. [1979]. Speedup of Ordinary Programs, Ph.D. Thesis, Dept. of Computer Science, Univ....
	Baskett, F. and T. W. Keller [1977]. “An Evaluation of the CRAY-1 Processor,” in High Speed Compu...
	Bucher, I. Y. [1983]. “The computational speed of supercomputers,” Proc. SIGMETRICS Conf. on Meas...
	Callahan, D., J. Dongarra, and D. Levine [1988]. “Vectorizing compilers: A test suite and results...
	Chen, S. [1983]. “Large-scale and high-speed multiprocessor system for scientific applications,” ...
	Dongarra, J. J. [1986]. “A survey of high performance processors,” COMPCON, IEEE (March), 8– 11.
	Fazio, D. [1987]. “It’s really much more fun building a supercomputer than it is simply inventing...
	Flynn, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (December), 1901– 1909.
	Hintz, R. G. and D. P. Tate [1972]. “Control data STAR-100 processor design,” COMPCON, IEEE (Sept...
	Jordan, K. E. [1987]. “Performance comparison of large-scale scientific processors: Scalar main�f...
	Kuck, D., P. P. Budnik, S.-C. Chen, D. H. Lawrie, R. A. Towle, R. E. Strebendt, E. W. Davis, Jr.,...
	Lincoln, N. R. [1982]. “Technology and design trade offs in the creation of a modern supercompute...
	Lubeck, O., J. Moore, and R. Mendez [1985]. “A benchmark comparison of three super�computers: Fuj...
	Miranker, G. S., J. Rubenstein, and J. Sanguinetti [1988]. “Squeezing a Cray-class super�computer...
	Miura, K. and K. Uchida [1983]. “FACOM vector processing system: VP100/200,” Proc. NATO Advanced ...
	Moore, B., A. Padegs, R. Smith, and W. Bucholz [1987]. “Concepts of the System/370 vector �archit...
	Padua, D. and M. Wolfe [1986]. “Advanced compiler optimizations for supercomputers,” Comm. ACM 29...
	Russell, R. M. [1978]. “The CRAY-1 processor system,” Comm. of the ACM 21:1 (January), 63–72.
	Schneck, P. B. [1987]. Superprocessor Architecture, Kluwer Academic Publishers, Norwell, Mass.
	Smith, B. J. [1981]. “Architecture and applications of the HEP multiprocessor system,” Real-Time ...
	Sporer, M., F. H. Moss, and C. J. Mathais [1988]. “An introduction to the architecture of the �St...
	Watanabe, T. [1987]. “Architecture and performance of the NEC supercomputer SX system,” �Parallel...
	Watson, W. J. [1972]. “The TI ASC—A highly modular and flexible super processor architecture,” Pr...
	Exercises

	In these Exercises assume DLXV has a clock rate of 200 MHz and that Tloop = 15. Use the start-up ...
	B.1� [10] <B.1,B.2> Write a DLXV vector sequence that achieves the peak MFLOPS performance of the...
	B.2� [20/15/15] <B.1–B.6> Consider the following vector code run on a 200-MHz version of DLXV for...

	LV V1,Ra MULTV V2,V1,V3 ADDV V4,V1,V3 SV Rb,V2 SV Rc,V4
	Ignore all strip-mining overhead, but assume that the store latency must be included in the time ...
	a. [20] <B.1–B.5> Assuming no chaining and a single memory pipeline, how many chimes are required...
	b. [15] <B.1–B.5> If the vector sequence is chained, how many clock cycles per result does this s...
	c. [15] <B.1–B.6> Suppose DLXV had three memory pipelines and chaining. If there were no bank con...
	B.3� [20/20/15/15/20/20/20] <B.2–B.6> Consider the following Fortran code:

	do 10 i=1,n A(i) = A(i) + B(i) B(i) = x * B(i) 10 continue
	Use the techniques of section�B.6 to estimate performance throughout this Exercise, assuming a 20...
	a. [20] <B.2–B.6> Write the best DLXV vector code for the inner portion of the loop. Assume x is ...
	b. [20] <B.2–B.6> Find the total time for this loop on DLXV (T100). What is the MFLOP rating for ...
	c. [15] <B.2–B.6> Find r° for this loop.
	d. [15] <B.2–B.6> Find N1/2 for this loop.
	e. [20] <B.2–B.6> Find Nv for this loop. Assume the scalar code has been pipeline scheduled so th...
	f. [20] <B.2–B.6> Assume DLXV has two memory pipelines. Write vector code that takes advan�tage o...
	g. [20] <B.2–B.6> Compute T100 and r100 for DLXV with two memory pipelines.
	B.4� [20/10] <B.3> Suppose we have a version of DLXV with eight memory banks (each a double word ...
	a. [20] <B.3> If a load vector of length 64 is executed with a stride of 20 double words, how man...
	b. [10] <B.3> What percentage of the memory bandwidth do you achieve on a 64- �element load at st...

	B.5� [12/12] <B.4–B.6> Consider the following loop:

	C = 0.0 do 10 i=1,64 A(i) = A(i) + B(i) C = C + A(i) 10 continue
	a. [12] <B.4–B.6> Split the loop into two loops: one with no dependence and one with a depen�denc...
	b. [12] <B.4–B.6> Write the DLXV vector code for the loop without a dependence.
	B.6� [20/15/20/20] <B.4–B.6> The compiled Linpack performance of the CRAY-1 (designed in 1976) wa...

	do 10 i=1,64 do 10 j=1,64 Y(k,j) = a*X(i,j) + Y(k,j) 10 continue
	a. [20] <B.4–B.6> Write the straightforward code sequence for just the inner loop in DLXV vec�tor...
	b. [15] <B.4–B.6> Using the techniques of section�B.6, estimate the performance of this code on D...
	c. [20] <B.4–B.6> Rewrite the DLXV code to reduce the performance limitation; show the resulting ...
	d. [20] <B.4–B.6> Estimate the performance of your new version, using the techniques of section�B...
	B.7� [15/15/25] <B.5> Consider the following code.

	do 10 i=1,64 if (B(i) .ne. 0) then A(i) = A(i) / B(i) 10 continue
	Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0 contains 0.
	a. [15] <B.5> Write the DLXV code for this loop using the vector-mask capability.
	b. [15] <B.5> Write the DLXV code for this loop using scatter-gather.
	c. [25] <B.5> Estimate the performance (T100 in clock cycles) of these two vector loops, assum�in...
	B.8� [15/20/15/15] <B.1–B.6> In Fallacies and Pitfalls of Chapter�1, we saw that the dif�ference ...

	C Code sequence 1 do 10 i=1,10000 A(i) = x * A(i) + y * A(i) 10 continue
	C Code sequence 2 do 10 i=1,100 A(i) = x * A(i) 10� continue
	Assume there is a version of DLXV (call it DLXVII) that has two copies of every floating- point f...
	a. [15] <B.1–B.6> Find the number of clock cycles for code sequence 1 on DLXV.
	b. [20] <B.1–B.6> Find the number of clock cycles on code sequence 1 for DLXVII. How does this co...
	c. [15] <B.1–B.6> Find the number of clock cycles on code sequence 2 for DLXV.
	d. [15] <B.1–B.6> Find the number of clock cycles on code sequence 2 for DLXVII. How does this co...
	B.9� [20] <B.4> Here is a tricky piece of code with two-dimensional arrays. Does this loop have d...

	do 290 j = 2,n do 290 i = 2,j aa(i,j)= aa(i-1,j)*aa(i-1,j)+bb(i,j) 290 continue
	B.10� [12/15] <B.4> Consider the following loop:

	do 10 i = 2,n A(i) = B 10 C(i) = A(i-1)
	a. [12] <B.4> Show there is a loop-carried dependence in this code fragment.
	b. [15] <B.4> Rewrite the code in FORTRAN so that it can be vectorized as two separate vector �se...
	B.11� [15/25] <B.4> As we saw in Chapter 4 and in section�B.4, some loop structures are not easil...

	dot = 0.0 do 10 i=1,64 10 dot = dot + A(i) * B(i)
	This loop has an obvious loop-carried dependence (on dot) and cannot be vec�torized in a straight...
	do 10 i=1,64 10 dot(i) = A(i) * B(i) do 20 i=2,64 20 dot(1) = dot(1) + dot(i)
	The variable dot has been expanded into a vector; this transformation is called scalar expansion....
	a. [15] <B.4> One simple scheme for compiling the loop with the recurrence is to add sequences of...
	b. [25] <B.4> In some vector processors, the vector registers are addressable, and the operands t...
	B.12� [40] <B.2–B.5> Extend the DLX simulator to be a DLXV simulator, including the ability to co...
	B.13� [50] <B.4> Modify the DLX compiler to include a dependence checker. Run some scientific cod...
	B.14� [Discussion] Some proponents of vector processors might argue that the vector pro�cessors h...
	B.15� [Discussion] Consider the points raised in Concluding Remarks (section�B.8). This topic—the...

