

Advanced CISC Implementations: Pentium 4

Krste Asanovic
Laboratory for Computer Science
M.I.T.

http://www.csg.lcs.mit.edu/6.823

Intel Pentium Pro (1995)

Krste Asanovio May 7, 2001 6.823, L22--2

- During decode, translate complex x86 instructions into RISC-like micro-operations (uops)
 - e.g., "R ← R op Mem" translates into

load T, Mem # Load from Mem into temp reg $R \leftarrow R$ op T # Operate using value in temp

- Execute uops using speculative out-of-order superscalar engine with register renaming
- Pentium Pro family architecture (P6 family) used on Pentium-II and Pentium-III processors

Intel Pentium 4 (2000)

Krste Asanovic May 7, 2001 6.823, L22--3

- · Deeper pipelines than P6 family
 - about half as many levels of logic per pipeline stage as P6
- Trace cache holds decoded uops
 - only has a single x86->uop decoder
- Decreased latency in same process technology
 - aggressive circuit design
 - new microarchitectural tricks

This lecture contains figures and data taken from: "The microarchitecture of the Pentium 4 processor", Intel Technology Journal, Q1, 2001

Deep Pipeline Design

Krste Asanovic May 7, 2001 6.823, L22--7

Greater potential throughput but:

- Clock uncertainty and latch delays eat into cycle time budget
 - doubling pipeline depth gives less than twice frequency improvement
- Clock load and power increases
 - more latches running at higher frequencies
- More complicated microarchitecture needed to cover long branch mispredict penalties and cache miss penalties
 - from Little's Law, need more instructions in flight to cover longer latencies → larger reorder buffers
- P-4 has three major clock domains
 - Double pumped ALU (3 GHz), small critical area at highest speed
 - Main CPU pipeline (1.5 GHz)
 - Trace cache (0.75 GHz), save power

Trace Cache Advantages

Krste Asanovic May 7, 2001 6.823, L22--9

- Removes x86 decode from branch mispredict penalty
 - Parallel x86 decoder took 2.5 cycles in P6, would be 5 cycles in P-4 design
- Allows higher fetch bandwidth fetch for correctly predicted taken branches
 - P6 had one cycle bubble for correctly predicted taken branches
 - P-4 can fetch a branch and its target in same cycle
- Saves energy
 - x86 decoder only powered up on trace cache refill

- · Fast ALUs and bypass network runs at double speed
- All "non-essential" circuit paths handled out of loop to reduce circuit loading (shifts, mults/divs, branches, flag/ops)
- · Other bypassing takes multiple clock cycles

Scaling of Wire Delay

Krste Asanovic May 7, 2001 6.823, L22--22

- Over time, transistors are getting relatively faster than long wires
 - wire resistance growing dramatically with shrinking width and height
 - capacitance roughly fixed for constant length wire
 - RC delays of fixed length wire rising
- Chips are getting bigger
 - P-4 >2x size of P-III
- Clock frequency rising faster than transistor speed
 - deeper pipelines, fewer logic gates per cycle
 - more advanced circuit designs (each gate goes faster)
- ⇒ Takes multiple cycles for signal to cross chip

Krste Asanovic May 7, 2001 6.823, L22--24

Instruction Set Translation

- · Convert a target ISA into a host machine's ISA
- Pentium Pro (P6 family)
 - translation in hardware after instruction fetch
- Pentium-4 family
 - translation in hardware at level 1 instruction cache refill
- Transmeta Crusoe
 - translation in software using "Code Morphing"