b A Krste Asanovic
N February 21, 2001
[y 6.823, L5--1

Simple Instruction Pipelining

Krste Asanovic
Laboratory for Computer Science
M.L.T.

http://www.csg.lcs.mit.edu/6.823

b A Krste Asanovic
N February 21, 2001
[y 6.823, L5--2

Processor Performance Equation

Time = Instructions * Cycles * Time
Program Program Instruction Cycle

* Instructions per program depends on source code,
compiler technology, and ISA

* Microcoded DLX from last lecture had cycles per
instruction (CPI) of around 7 minimum

» Time per cycle for microcoded DLX fixed by
microcode cycle time

- mostly ROM access + next uPC select logic

Page 1

ﬁ% Krste Asanovic

T g February 21, 2001

[. . 6.823, L5--3
Pipelined DLX

To pipeline DLX:
* First build unpipelined DLX with CPI=1

» Next, add pipeline registers to reduce
cycle time while maintaining CPI=1

A e
A Simple Memory Model

WriteEnable

Clock
|

Address —;
MAGIC — ReadData
RAM

WriteData —

Reads and writes are always completed in one cycle
» a Read can be done any time (i.e. combinational)
» a Write is performed at the rising clock edge
if it is enabled
= the write address and data
must be stable at the clock edge

Page 2

b A Krste Asanovic
N February 21, 2001
iS

Datapath for ALU Instructions =

RegWrite

clk

We
rsl
»|rs2

inst<25:21>
inst<20:16>

»

addr

inst rd 1}

< ws
| L »|wd rd2 z
clk nst. inst<15:1:q$

GPRs
Memory . 2
inst<15:0: o Imm
”|_Ext
X

inst<31:26> 45:0> ALU

Control
1

>

\
OpCode RegDst ExtSel OpSel BSrc

rf2 / rf3 Reg / Imm
6 5 5 5 5 6
0 rfl rf2 rf3 | 0 | func rf3 « (rfl) func (rf2)
opcode| rfl rf2 immediate rf2 « (rf1) op immediate

A B
Datapath for Memory Instructions

Should program and data memory be separate?

Harvard style: separate
(Aiken and Mark 1 influence)
- read-only program memory
- read/write data memory
at some level the two memories have
to be the same

Princeton style: the same
(von Neumann'’s influence)
- A Load or Store instruction requires
accessing the memory more than once
during its execution

Page 3

Krste Asanovic
February 21, 2001
6.823, L5--7

Load/Store Instructions:
Harvard-Style Datapath

MemWrite

RegWrite

WBSrc
ALU/ Mem

addr

inst—\;:D_:
Inst.

Memory

clk

[ALU |
"Icantrol

A

v

OpCode RegDst ExtSel OpSel BSrc
6 5 5 16 addressing mode
[opcode] rf1 | rf2 | displacement | (rf1) + displacement
31 26 25 21 20 16 15 0

rflis the base register
rf2 is the destination of a Load or the source for a Store

Krste Asanovic
February 21, 2001
6.823, L5--8

Memory Hierarchy ¢.2000

On-chip Caches Off-chip Hard Disk
Cache
Interleaved
Proc @ L2 SRAM Banks of DRAM
2~3ns <10ns < 20ns ~150ns ~10ms seek time
2-3clk 5~15clk | 15~30clk 100~150 clk ~107clk
32~64KB 1MB 1~-8MB 64M~1GB 8~50GB

Our memory model is a good approximation of
the hierarchical memory system when we hit in
the on-chip cache

Page 4

ﬁ“‘
1

Conditional Branches e

6.823, L5--9
PCSrc (~j /1))

RegWrite

MemWrite WBSrc

clk
addr

I
inst rd1 we
in w

addr

Inst.
Memory|

r
\C
A\ 4

A rdat [~
Data
Memory

L P wdata

1 o[ALU |

v
OpCode RegDst ExtSel

OpSel BSrc zero?

A - .
Register-Indirect Jumps E

PCSrc (~j / jRInd /jPCR) RegWrite

MemWrite WBSrc

»irs1 clk
»lrs2 v
addr s rdl -JddT
ws »|addr
—»{wd rd2 > e i
clk Inst. 2 GPRs _l z rdat
Memory| > Data
[Tmm | l 4 Memory]|
'LB‘trl P wdata
J ALU]
. A
Jump & Link?
v

\4
OpCode RegDst ExtSel OpSel BSrc zero?

Page 5

PCSrc

RegWrite

Jump & Link

MemWrite WBSrc

ExtSel

rf3/rf2 /R31

zero?

Krste Asanovic
February 21, 2001
6.823, L5--11

ALU/Mem /PC

PCSrc

PC-Relative Jumps

RegWrite

MemWrite WBSrc

0x4

/—
f“h

Krste Asanovic
February 21, 2001
6.823, L5--12

clk
P v

rsl

—> addr

clk Inst.

rs2

insf ws

wd rd3
GPRs |

we

rdj

Memor

No new

datapath

required

@
@
»
A4 \AJ

[Tmm]

\ AR 4

Lef |

JALU |
"Controll
A

\ 4

*VV

ExtSel OpSel
Ext16 / Ext26

v

zero?

Page 6

A
Single-Cycle Hardwired Control

We will assume
* clock period is sufficiently long for all of
the following steps to be “completed”:

1. instruction fetch

2. decode and register fetch

3. ALU operation

4. data fetch if required

5. register write-back setup time

= tc> Ureren * trreten T taLut tomem™ trws

» At the rising edge of the following clock, the PC,
the register file and the memory are updated

i
Hardwired Control is pure
Combinational Logic

— ExtSel
— > BSrc
——» OpSel
combinational [MemWrite
—> WBSrc
— > RegDst

op code ———»

zero? ———» logic

—— RegWrite

——» PCSrc

Page 7

L]

\ 4

Decode Map —

ALU Control & Immediate Extensio

Inst<5:0> (Func) >
Inst<31:26> (Opcode
(Op) > ALUop
—>
+ '
0? —p
|4
OpSel
(Func, Op, +,0?)

Krste Asanovic

February 21, 2001

n

6.823, L5--15

ExtSel

(sExt,q, UEXt,
SExt,s, High,g)

»
>

Krste Asanovic
. February 21, 2001
6.823, L5--16
Hardwired Control worksheet
PCSrc RegWrite MemWrite WBSrc
PCR/RInd / ~j ALU/Mem
/PC
<
>
='\|
0x4 l Add
Add[® > ox4
FAdd
clk '
|& \4
22212 rsl ¢ clk
inst<20:16: >
»Irs2 ! 4
—> addr 31 rd1) ='\l we
inSt—, ws »|addr
—|wd rd2 > Lﬂ*
clk Inst. inst<15:11>4 GPRs | T |z rdat g4
Memory| > Data >
inst<25:0> ;I imm | Memory| —>]
TlEg I »| wdata
inst<31:26>K5: J ALU |
“lcontrol
v v
OpCode RegDst ExtSel OpSel BSrc zero?
rf2 [/ rf3/ SExt;/uExt,/ Func/ Reg/Imm
R31 sExt,/High,s Op/+/0?

Page 8

Ext
Sel

B
Src

Op
Sel

Mem
Write

Reg
Write

WB
Src

Hardwired Control Table

Reg
Dst

Krste Asanovic
February 21, 2001
6.823, L5--17

Src

ALU
ALUu

ALUi
ALUui

LW
SW

BEQZ
BEQZ

taken

~taken

J
JAL

JR

JALR
BSrc = Reg /Imm
PCSrc = PCR/RINnd / ~j

WBSrc = ALU/Mem / PC

RegDst =rf2/rf3/R31

Krste Asanovic
February 21, 2001

ki Hardwired Control Table: Harvard bLx ===

Ext B Op Mem | Reg WB Reg PC
Sel Src Sel Write| Write Src Dst | Src
ALU * Reg Func no yes ALU rf3 ~j
ALUu * Reg Func no yes ALU rf3 ~j
ALUi SsExt; Imm Op no yes ALU rf2 ~j
ALUui UExXt,, Imm Op no yes ALU rf2 ~j
LW sExt; Imm + no yes Mem rf2 ~j
SW sExt;; Imm + yes no * * =~
BEQZ,q0o-1 | SEXtyq * 0? no no * * PCR
BEQZ,¢0—0 | SEXtys * 0? no no * * ~j
J SExt,g * * no no * * PCR
JAL SExty,, * * no | yes PC R31| PCR
JR * * * no no * * RiInd
JALR * * * no yes PC R31 Rind
BSrc = Reg /Imm WBSrc = ALU/Mem / PC RegDst =rf2/rf3/R31
PCSrcl=j/~j PCSrc2 =PCR/RInd

Page 9

A .
Pipelined DLX Datapath |

Ve
»irsl
P»irs2
addr rd1j Ve
rdatal » 3‘53 2 ALUI »|addr o
: rdata »
Inst. GERs Data d
Memory »| mm Memory >
P{wdata
write
fetch decode & Reg-fetch [execute memory -back
phase phase phase phase phase

Clock period can be reduced by dividing the execution
of an instruction into multiple cycles

tc > max {tyy, tre, tays tow trwd = tom (Probably)

However, CPIl will increase unless instructions
are pipelined

A N
How to divide the datapath |
Into stages

Suppose memory is significantly slower than other
stages. In particular, suppose

tv = tom = 10 units
ta .y = 5 units
trr = try = 1 UNIt

Since the slowest stage determines the clock, it may
be possible to combine some stages without any loss
of performance

Page 10

“ Minimizing Critical Path

Vwe

addr

rdata ALU

p o |
A i \A 4
=
» N
g

wd rd2) »
GPRs >
Inst.
Memory »| Imm
write
fetch decode & Reg-fetch & execute memory -back
phase phase phase phase

tc > max {tyy, tre *+ tarys tows trwt

Write-back stage takes much less time than other stages.
Suppose we combined it with the memory phase

= Iincrease the critical path by 10%

B Maximum Speedup by =&z
Pipelining
For the 4-stage pipeline, given
ti = tow = 10 units, ty , = 5 units, tge = tgy= 1 unit
tc could be reduced from 27 units to 10 units
= speedup = 2.7

However, if t,, = toy = tay = tre = tgw = 5 UNIts
The same 4-stage pipeline can reduce t. from 25 units to
10 units

= speedup = 2.5

But, since t,, =tpy =tay = tre = trw, it IS pOSsible to
achieve higher speedup with more stages in the pipeline.
A 5-stage pipeline can reduce t: from 25 units to
5 units
= speedup =5

Page 11

b A Krste Asanovic
N February 21, 2001
iS

Technology Assumptions

We will assume

* A small amount of very fast memory (caches)
backed up by alarge, slower memory

* Fast ALU (at least for integers)

* Multiported Register files (slower!).

It makes the following timing assumption valid

tim = tre = taLu = tom = trw

A 5-stage pipelined Harvard-style architecture will
be the focus of our detailed design

Ay 5-Stage Pipelined Execution ™t

fetch decode & Reg-fetch | execute memory -back
phase phase phase phase phase
(IF) (ID) (EX) (MA) (WB)
time t0O t1 t2 t3 t4 t5 t6 t7
instructionl IF;, ID; EX; MA;, WB;
instruction2 IF, ID, EX, MA, WB,
instruction3 IF; ID; EX; MA; WB,
instruction4 IF, ID, EX, MA,WB,
instruction5 IF; ID; EX; MA; WBg

Page 12

L 5-Stage Pipelined Execution =i
Resource Usage Diagram

write

fetch decode & Reg-fetch || execute memory -back
phase phase phase phase phase
(IF) (ID) (EX) (MA) (WB)

time to t1 t2 t3 t4 t5 t6 t7

@ IF P A P =

o ID P A P =

3 EX P P O P

% MA Il I2 |3 I4 I5

x WB P A P =
Bl H - . Krste Asanovic
By Pipelined Execution: S

ALU Instructions

not quite correct!

V-we
rsl
rs2

ws

addr
inst
wd rd2

Inst GPRs

Memory]|
»| Imm

0
®
i \A4
3
E
\ AR 4

Page 13

By Pipelined Execution:
Need for Several IR’s

addr

inst

Inst
Memory|

Krste Asanovic

A
ﬁ%’ February 21, 2001
[y 6.823, L5--28

IRs and Control points

A
v we
»irsl]
»{rs2
addr rdf A \
inst »lws LAY
—p|wd rd > AL
Inst GPRs | |78
Memory i W~
o Imm
Ext
LA
MD1

Are control points connected properly?
- Load/Store instructions
- ALU instructions

Page 14

A Pipelined DLX Datapath ™=

without jumps

vY

b A Krste Asanovic
N February 21, 2001
iS

An Ideal P|pe||ne 6823, 15--30

‘ | »| stage ‘ | »| stage *|:|_> stage *|:|_> stage |
1 2 3 4

* All objects go through the same stages

* No sharing of resources between any two stages
* Propagation delay through all pipeline stages is equal

» The scheduling of an object entering the pipeline
Is not affected by the objects in other stages
These conditions generally hold for industrial
assembly lines. An instruction pipeline, however,
cannot satisfy the last condition. Why?

Page 15

B
How Instructions can Interact
with each other in a pipeline

* An instruction in the pipeline may need a resource
being used by another instruction in the pipeline
Structural hazard

* An instruction may produce data that is needed by
a later instruction
data hazard

* In the extreme case, an instruction may determine
the next instruction to be executed
control hazard (branches, interrupts,...)

b A Krste Asanovic
N February 21, 2001
w 6.823, L5--32

Feedback to Resolve Hazards

<—| 80« f FBy) f<—

stage stage stage stage|_,
1 2 3 4

Controlling pipeline in this manner works provided

the instruction at stage i+1 can complete without

any interference from instructions in stages 1 to i
(otherwise deadlocks may occur)

Feedback to previous stages is used to stall or kill
instructions

Page 16

