6.004 - Spring 2001 5/15/01

Parallel Processing

I've gotta spend at least

20 hours studying for I’ll ge}ilzbo ;riend.s to hhelp...
... we’'ll be done in an hour.
the 6.004 final!

: 2
VRS- AW pr
T S
VI
/ MNERD KT .I,

i

Handouts: Lecture Slides

L25 - Parallel Proces

sing 1

The Home Stretch ﬁ

All labs MUST be checked-off in by Friday (5/18).
ALL LABS MUST BE COMPLETED TO PASS 6.004!

THURSDAY 5/17 - The Future of Computers...

THURSDAY 5/17 at 4:00 - Beta Design Contest (34-501)
Cool Prizes, Fame, and a cure for lab withdrawal pains

FRIDAY 5/186 sections - Final Quiz Review
TUESDAY 5/22 - FINAL EXAM (1:30 — 4:30, Rockwell)
TUESDAY EVENING -

Immense Satisfaction/Rejoicing/Relief/Celebration/Wild Partying.

6.004 - Spring 2001 5/15/01 L25 — Parallel Process

ing 2

TIPs Anyone?

Clock Frequency (in MHz)

| guess that means M l Ps —

that there are 102 Clocks per Instruction
microphones ina

Megaphone? PIP!

> 6 9 12 P -10®
% Mega —10¢ Giga —10° Tera—10 p

Light travels about 1 ft / 10° secs in free space. ==

In a Tera-IP uniprocessor no clock-to-clock path can be
ho larger than 300 microns...

We already know of problems that require greater than a TIP
(Simulations of weather, weapons, brains)

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 3

Driving Down the Denominator

Techniques for increasing parallelism:

Pipelining — reasonable for a small number of stages (5-
10), after that bypassing and stalls become
unmanageable.

Superscalar — replicate data paths and design control
logic to discover parallelism in traditional programs.

Explicit parallelism — must learn how to write programs
that run on multiple CPUs.

6.004 - Spring 2001 5/15/01 L25 — Parallel Proc

essing 4

Superscalar Parallelism

- Popular how, but the end is near

- Multiple instruction dispatch

- Speculative execution Instruction
Cache ™ —
Instruction Queue
e a e s P e v | | | Instr Fetch & ITLB ——»
Dispatch A L
Operand Buses :5
=
s
Register| £ = Branch -
File E Y = '+ ' =
. % Ex Unit il Ld/St ——*Mem Unit & DTLB—# =
x Unit :
Reorder| ™ Unit ¢ » D
— ™ ata
Buffer Cache -
Result Buses

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 5

Explicit Parallelism

Control Communication rocessing lements
hi ie hare Memor omogeneous
istri ute |Message assing eterogeneous

Decoding the Parallel Processor Alphabet Soup:
SIMD - Single-Instruction-Multiple-Data

Unified control, Homogeneous processing elements
VLIW - Yery-Long-Instruction-Word
Unified control, Hetrogeneous processing elements

MIMD - Multiple-lnstruction-Multiple-Data
Distributed control

SMP — Symmetric Multi-Processor
Distributed control, Shared memory, Homogenous PEs

6.004 - Spring 2001 5/156/01

L25 — Parallel Processing 6

SIMD Processing

v

PC B

Data
ol Reg File Reg File Reg File Reg File Memory
oo NAL | NALS | A | NS o
Memory Addressing

Unit
data

Each datapath has its own local data (Register File)

Control

This sort of
construct is
also becoming

All data paths execute the same instruction

Conditional branching is difficult...
(What if only one CPU has R1 = 0?)
o ularon

modern #. Conditional operations are common in SIMD machines

uniprocessors f if (flag1) Rc = Ra <op> Rb
Global ANDing or ORing of flag registers are used for

high-level control

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 7

SIMD Coprocessing Units

64_{—

“Intel MMX” Reg File

64$ 64_|-

o4-bit ALU

SIMD data path added to a traditional CPU core
Register-only operands
Core CPU handles memory traffic

Partitionable Datapaths for variable-sized
“PACKED OPERANDS”

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing &

SIMD Coprocessing Units

64_|—
“Intel MMX” Reg File A32 B32 A3 B3I
64 64 c v
__— oS coFAci coFA ife—..
32-bit ALU j ‘ I
32-bit ALU Two 32 531
32-bit ALUs

SIMD data path added to a traditional CPU core
Register-only operands
Core CPU handles memory traffic

Partitionable Datapaths for variable-sized
“PACKED OPERANDS”

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 9

SIMD Coprocessing Units

64_{—

Nice data size for:

“Intel MMX” Reg File ra hics,

Signal Processing,

641/ ﬁ Multimedia Apps,
etc.
\/
\/\I/ U

Four
16-bit ALUs

SIMD data path added to a traditional CPU core
Register-only operands
Core CPU manages memory traffic
Partitionable Datapaths for variable-sized

“PACKED OPERANDS”

6.004 - Spring 2001 5/15/01 L25 — Parallel Processin

SIMD Coprocessing Units

MMX instructions:

64_— PADDB - add bytes
PADDW - add 16-bit words
6 ” . PADDD - add 32-bit words
Inte' M MX Reg Flle (unsigned & w/saturation)
64| 64| PSUB{B,W,D} — subtract

PMULTLW — multiply low
PMULTHW — multiply high
PMADDW — multiply & add

PACK —
Eight U PACK -
8&-bit ALUs PAND —
POR -

SIMD data path added to a traditional CPU core
Register-only operands
Core CPU manages memory traffic
Partitionable Datapaths for variable-sized

“PACKED OPERANDS”

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 11

VLIW Variant of SIMD Parallelism

A single-WIDE instruction controls multiple heterogeneous
datapaths.

Exposes parallelism to compiler (SpN vs. HpV)

6.004 - Spring 2001

5/15/01

IOP,|RC, | RA,|RB,|I0P,| RC,| RA|RB_| FOP|FD,| FA,| FB,| FD_ | FA | FB,| MemOP

Instr. Fetch Instr
Register File FP Regs el $ 5
Prediction 3
<
y y J] o M =
&tege ALU #1 Floating Point Load Data >
: mr Multiplier Store 8

nteger ALU #2, ! T 1 Unit $
Floating Point
Adder

L25 — Parallel Processing 12

MIMD Processing - Message Passing

Distributed Control, Homogeneous PEs

Can Leverage existing CPU designs / development tools

H/W focuses on communication (2-D Mesh, N-Cube)

S/W focuses on partitioning of data & algorithms

6.004 - Spring 2001

link
== Ewiz : Szl
Mem Mem Mem Mem Mem
link
Mem Mem Mem Mem Mem
5/15/01 L25 — Parallel Processing 13

MIMD Processing - Shared memory

All processors share a common main memory
Leverages existing CPU designs
Easy to migrate “Processes™ to “Processors™

Share data and program

Communicate through

shared memory BIIBIIBIIBIIB
Upgradeable ¢ ¢ ¢ ¢ ¢
Problems: ¥ b ¢ ? }

SCa|abi“ty %

Synchronization

Main Memory

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 14

Programming the Beast

©.004 (circa 2000):

int factorial(int n) {
if (n>0)
return n*fact(n-1);
else
return 1;

Calls factorial() only n times

Runs in O(N) time

6.004 - Spring 2001

©.004 (circa 2020):

int factorial(int n) {
return facthelp(1, n):

}

parallel int facthelp(int from, int to) {
int mid;
if (from >= to) return from;
mid = (from + t0)/2;
} return (facthelp(from,mid)*facthelp(mid+1,to));

A A
L0 MDA ED

{1,2,3,4,5,0,7, &}

Calls facthelp() 2n —1 times
(hodes in a binary tree with n leafs).

Runs in O(log,(N)) time
(on N processors)

5/15/01 L25 — Parallel Processing 15

"Dusty Deck” Problem

How do we make our old sequential programs run on parallel
machines? After all, what’s easier, designing new H/W or
rewriting all our S/W?¢

If we treat PROCESSES as a programming constructs
(see last lecture)... and assign each process to a
separate processor... can't we easily take advantage of
parallelism.

(OEFINE (FACT W) [IF [= M 13 1 * N (FacT = N 11230)

3
|11 :|uuuuu|u| [|Lun|uuluJlllrtcluuuulllll rrnnnnnnﬂ1!:tﬁnnuuuuua1!| :[nuuuuuu:
Er!. SERCR R R I BESHAX TN u

“’1IIIII|||| 1||||||||:- 11111||||||m1.1n.1|||||| BEERREEE R 11|||||||| 11‘

!::::.gg;;,.j:anﬁﬂﬁ****? """ :az:t‘*“&*izz z=%€x¢? ralT Xl ??,...J}

il::"'l**‘]]. Igiiigss 1.11.11‘Iﬁ*jiliE}]IIIII“SE&i]JJJJJJ RERERFEER DR PR R R

@?1||4|:e R e RRERR R ARt s L {441 Ca gy SRS e S
fsssssssaaaaazz:::v:numa 5r g5 55551?3' *5 555“3J;]ik‘t?tlhhhl)kﬁ&!!thbhﬁhﬁ\ﬁ

:-:'.IIIEIHI EREEEEERERE4E [fE[I:EE-jJ_E Ex Tk F!H- ,_-| S EEEEEEESEEAEREEEERRET :
by | 14 M OB OREE B R1TITITER é T ||||| rfn F..!Jllii.| --------------- BEEN RS REEEEE

(TH | B ||| EERE) GiEd LR fflftalfaaslf! ¢-rrub%n31\,=-=i:ssss SATLNNLERRRRBRITINNT

(TR EER RN RN R RN S "l']]'*'I:'] LREEB% "l"]] 9:9-3°51% FFIFDEN3 339333
' v WHEA? Bl B O .

AR

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 16

Multiprocessor Fantasies

If one processor is good, N processors are GREAT:

Py P Py

_I_l_’—l_

Shared Main Memory

IDEA:
* Run N processes, each on its OWN processor!
* Processors compete for bus mastership, memory access
* Bus SERIALIZES memory operations (via arbitration for mastership)
PROBLEM:
The Bus quickly becomes the BOTTLENECK

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 17

Multiprocessor with Caches

But, we've seen this problem before. The solution, add CACHES.

0O O O ©

Shared Memory, x=1,y=2

Consider the following trivial processes running on P, and P,:

Process A Process B

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 1&

What are the Possible Outcomes?

Process A Process B
EEEEEEN EEEEEEN
[(TIITTIII11] [(TIITTIII11]

$1:x=1 $2:x=1
y=2 y=2

Plausible execution sequences:

SEQUENCE A prints B prints
x=3; print(y); y=4; print(x); 2
x=3; y=4; print(y); print(x);
x=3; y=4; print(x); print(y);
y=4; x=3; print(x); print(y);
y=4; x=3; print(y); print(x);
y=4; print(x); x=3; print(y);

DNDDNDDNDDNDDN

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 19

Uniprocessor Outcome

But, what are the possible outcomes if we ran Process A and
Process B on a single timed-shared processor?

Process A Process B
[TTTT1T] [TIIII1]
Notice that the
Plausible Uniprocessor execution sequences: outcome 2, 1
does not appear
SEQUENCE A prints B prints c in ?‘5 ioti

x=3; print(y); y=4; print(x);
x=3; y=4; print(y); print(x);
x=3; y=4; print(x); print(y);
y=4; x=3; print(x); print(y);
y=4; x=3; print(y); print(x);
y=4; print(x); x=3; print(y);

4

e el e e L\
— 00O W

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 20

Sequential Consistency

Semantic constraint:

Result of executing N parallel programs should correspond to some
interleaved execution on a single processor.

Shared Memory

[TTTTTTITTITITIT]
Process A Process B
[TTTTTIT] [TTTTTIT] Weren't
IIIIIIIIIII I:I:I:I:I:I:I:I:I:l:l caches
supposed to

. . be invisibl
Possible printed values: 2, 3; 4,3; 4,1. o e
(each corresponds to at least one interleaved execution) programs?

(corresponds to NO valid interleaved execution).

| ~
a ~
IMPOSSIBLE printed values: 2, 1 5

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 21

Cache Incoherence

PROBLEM: “stale” values in cache ...

Does
WRITE-THRU
help?

NO |

Py P

I | o

[$1: b] [$2: x=1]
y=2 y=
‘ The problem is

not that
Shared Memory x=3, y=4 m(;mo; .
stale values,
Process A Process B but that other
caches may!
g [[TTTTT] gy [TTIIIT]

Q: How does B know that A has changed the value of x¢

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 22

Cache Coherence Solutions

Problem: A writes data into shared memory; B still sees “stale” cached
value.

Solutions:
1. Don’t cache shared Read/Write pages.
COST: Longer access time to shared memory.

2. Attach cache to shared memory, not to processors...
... share the cache as well as the memory!

COSTS: 1. Bus Contention

2 Locality

P, P2

Shared Memory

3. Make caches talk to each other, maintain a consistent story.

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 23

"Snoopy” Caches

p p Presume
f : . WRITE-THRU
[$1: x=1 %6] [$2; PN] caches!
y=2 ~ ~ 2 T =

IDEA:

* P, writes 3 into x; write-thru cache causes bus transaction.

* P,, snooping, sees transaction on bus. INVALIDATES or UPDATES its
cached x value.

MUST WE use a write-thru strategy?

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 24

Coherency w/ write back

P, Py
[5 addr | data] [5] addr | data]
Shared Memory x=1, y=2

IDEA:
® Various caches can have
* Multiple SHARED read-only copies; OR
* One UNSHARED exclusive-access read-write copy.
» Keep STATE of each cache line in extra bits of tag

* Add bus protocols -- “messages” -- to allow caches to maintain globally
consistent state

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 25

Write Acknowledgement

UNIPROCESSORS can post writes or “write behind” --

-- continue with subsequent instructions after having initiated a
WRITE transaction to memory (eg, on a cache miss).

HENCE WRITES appear FAST.
Can we take the same approach with multiprocessors?

Consider our example (again)

Process A Shared Memory Process B
LTI [T TIITTIIIT] LTI
[T [T

SEQUENTIAL CONSISTENCY allows (2,3), (4,3), (4,1) printed; but not
(2.1).

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 26

Sequential Inconsistency

Process A Shared Memory Process B
LLTTIT1] [TIITTITIIIIIT] LLTTIT1]
ENEEEEEEEE ENEEEEENEE

Plausible sequence of events:
o A writes 3 into x, sends INYALIDATE message.
* B writes 4 into y, sends INVALIDATE message.
* A reads 2 fromy, prints it...
* B reads 1 fromy, prints it...
* A, B each receive respective INVALIDATE messages.

FIX: Wait for INVALIDATE messages to be acknowledged before proceeding
with a subsequent read.

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 27

Who needs Sequential Consistency, anyway?

ALTERNATIVE MEMORY SEMANTICS:
“WEAK” consistency

EASIER GOAL: Memory operations from each processor appear to be
performed in order issued by that processor;

Memory operations from different processors may overlap in arbitrary
ways (hot necessarily consistent with any interleaving).

DEC ALPHA APPROACH:

® Weak consistency, by default;

* MEMORY BARRIER instruction: stalls processor until all previous
memory operations have completed.

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 286

Semaphores in Parallel Processors

Can semaphores be implemented using ONLY atomic reads and writes?

ANSWER: Only if you're Dijketra

Contemporary solution:
HARDWARE support for atomic sequences of memory transactions.
* Explicit LOCK, UNLOCK controls on access to memory:

[TTTTTITITT]

[TTTTITTITITITITITIT] Requires, eg,
[TTTTTITITT] LOCK line on
HEEEENENENEEEENEERERENERER bus!
[(TTITTTITIT1T1]

* Single “Test and Set” instructions which perform atomic
READ/MODIFY/WRITE using bus-locking mechanism.

* (ALPHA Variant): “unlock” instruction returns O if sequence was
interrupted, else returns 1. Program can repeat sequence until its not
interrupted.

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 29

Parallel Processing Summary

Prospects for future CPU architectures:

Pipelining - Well understood, but mined-out
Superscalar - Nearing its practical limits

SIMD - Limited use for special applications
YLIW - Returns controls to S/W. The future?

Prospects for future Computer System architectures:
SMP - Limited scalability. Harder than it appears.
MIMD/message-passing - It’s been the future for

over 20 years now. How to program?

NEXT TIME: The REAL future --
New BOUNDARIES, New PROBLEMs

6.004 - Spring 2001 5/15/01 L25 — Parallel Processing 30

Coherent Cache States

Two-bit STATE in cache line encodes one of M, E, S, | states (“MESI” cache):

INVALID: cache line unused.

SHARED ACCESS: read-only, valid, not dirty. Shared with other read-
only copies elsewhere. Must invalidate other copies before writing.

EXCLUSIVE: exclusive copy, not dirty. On write becomes modified.

MOPDIFIED: exclusive access; read-write, valid, dirty. Must be written
back to memory eventually; meanwhile, can be written or read by local

PFOCC@@OF.

Current | Read Hit Read Miss. Read Miss. rite Hit Write Miss Shoop or Snoop for
t te n Hit Snoop Miss Read Write
Modified | Modified Invalid Invalid Modified Invalid S ared Invalid
(Wr-Back) (Wr-Back) (Wr-Back) (Push) (Push)
Exclusive | Exclusive Invalid Invalid Modified Invalid Shared Invalid
Shared Shared Invalid Invalid Modified Invalid Shared Invalid

(Invalidate)
Invalid X Shared Exclusive X Modified X X
(FilD) (FilD) (Fill-Inv)

6.004 - Spring 2001

5/15/01

4-state

FSM for
each

cache linel

(FREE!: Can redefine
VALID and DIRTY bits)

L25 — Parallel Processing 31

MESI Examples

Local WRITE request hits cache line in Shared state:

* Send INVALIDATE message forcing other caches to | states
* Change to Modified state, proceed with write.

F'1 F'2

Mem[6004] = 5

3-§]

M:xJ6004/1 U004

External Snoop READ hits cache line in Modified
state: P F’z

Print(Mem[6004])

* Write back cache line |
[zvi] L
o Change to Shar‘ed state 355)4/600473\' [5)(600 3]

6.004 - Spring 2001 5/156/01 L25 — Parallel Processing 32

