
L14 – Stacks and Procedures 16.004 - Spring 2001 4/3/01

Stacks and Procedures

Handouts: Lecture Slides

Fritz’s stack
is easily
overflowed

Lets see, before
returning from break.
I’d better look over my
6.004 notes… but I’ll
need to find my
backpack first… that
means I’ll need to find
the car… meaning, I’ll
need to remember
where I parked it…
maybe it would help if I
could remember where I
was last night… um, I
forget, what was I
going to do...

L14 – Stacks and Procedures 26.004 - Spring 2001 4/3/01

Procedure Linkage: First Try

int fact(int n)
{

if (n>0)
return n*fact(n-1);

else
return 1;

}
fact(4);

fact:
CMPLEC(r1,0,r0)
BT(r0,else)
MOVE(r1,r2) | save n
SUBC(r2,1,r1)
BR(fact,r28)
MUL(r1,r2,r1)
BR(rtn)

else: CMOVE(1,r1)
rtn: JMP(r28,r31)

CMOVE(4,r1)
BR(fact,r28)
HALT()

OOPS! OOPS!

Proposed convention:
• pass arg in R1
• pass return addr in R28
• return result in R1
• questions:

• nargs > 1?
• preserve regs?

Proposed convention:
• pass arg in R1
• pass return addr in R28
• return result in R1
• questions:

• nargs > 1?
• preserve regs?

L14 – Stacks and Procedures 36.004 - Spring 2001 4/3/01

A Procedure’s Storage Needs
Basic Overhead for Procedures/Functions:

• Arguments
f(x,y,z) or worse... sin(a+b)

• Return Address back to caller
• Results to be passed back to caller.

Temporary Storage:
intermediate results during expression evaluation.
(a+b)*(c+d)

Local variables:
...
{
int x, y;
... x ... y ...;

}
Each of these is specific to a particular activation of a

procedure; collectively, they may be viewed as the
procedure’s activation record.

In C it’s the caller’s job to
evaluate its arguments as
expressions, and pass their
resulting values to the callee…
Thus, a variable name is just a
simple case of an expression.

L14 – Stacks and Procedures 46.004 - Spring 2001 4/3/01

Lives of Activation Records
int fact(int n) {

if (n > 0) return n*fact(n-1);
else return 1;

}

fact(3) fact(3)

fact(2)

fact(3)

fact(2)

fact(1)

fact(3)

fact(2)

fact(1)

fact(0)

fact(3)

fact(2)

fact(1)

fact(3)

fact(2)

fact(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

L14 – Stacks and Procedures 56.004 - Spring 2001 4/3/01

We need a STACK!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

One possibility is a

STACK

A last-in-first-out (LIFO) data
structure.

Some interesting
properties of stacks:

Little overhead. Only
the top is directly
visible, the so-called
“top-of-stack”

We can add things
by PUSHING a new
value on top.

We can remove
things by POPING
off the top value.

L14 – Stacks and Procedures 66.004 - Spring 2001 4/3/01

Stack Implementation
CONVENTIONS:

• Waste a register for the
Stack Pointer (SP), R29.

• Builds UP (towards
higher addresses) on
push

• SP points to first
UNUSED location.

• Allocated a
lot of memory
well away
from our program
and its data

Mem[Reg[SP]]

(stacked data)
(stacked data)
(stacked data)
(stacked data)

Lower addresses

Higher addresses
PUSH

unused
space

Humm… suddenly up is
down, and down up

Other possible implementations
include stacks that grow “down”,
SP points to top of stack, etc.

Other possible implementations
include stacks that grow “down”,
SP points to top of stack, etc.

L14 – Stacks and Procedures 76.004 - Spring 2001 4/3/01

Stack Management Macros
PUSH(RX): push Reg[x] onto stack

Reg[SP] ==== Reg[SP] + 4;
Mem[Reg[SP]-4] = Reg[x]

POP(RX): pop the value on the top of the stack into Reg[x]
Reg[x] = Mem[Reg[SP]-4]
Reg[SP] = Reg[SP] - 4;

ALLOCATE(k): reserve k WORDS of stack
Reg[SP] = Reg[SP] + 4*k

DEALLOCATE(k): release k WORDS of stack
Reg[SP] = Reg[SP] - 4*k

ADDC(R29, 4, R29)
ST(RX,-4,R29)

ADDC(R29, 4, R29)
ST(RX,-4,R29)

LD(R29, -4, RX)
ADDC(R29,-4,R29)

LD(R29, -4, RX)
ADDC(R29,-4,R29)

ADDC(R29,4*k,R29)ADDC(R29,4*k,R29)

SUBC(R29,4*k,R29)SUBC(R29,4*k,R29)

Safe?

L14 – Stacks and Procedures 86.004 - Spring 2001 4/3/01

Fun with Stacks

We can squirrel away variables for latter. For
instance, the following code fragment can be
inserted anywhere within a program.

|
| Argh!!! I’m out of registers Scotty!!
|
PUSH(R0) | Frees up R0
PUSH(R1) | Frees up R1
LD(R31,dilithum_xtals, R0)
LD(R31,seconds_til_explosion, R1)

suspense: SUBC(R1, 1, R1)
BNE(R1, suspense, R31)
ST(R0, warp_engines,R31)
POP(R1) | Restores R1
POP(R0) | Restores R0

AND Stacks can also be used to solve other
problems...

Data is
popped
off the
stack
in the

opposite
order
that
it is

pushed on

L14 – Stacks and Procedures 96.004 - Spring 2001 4/3/01

Solving Procedure Linkage “Problems”

BUT FIRST, WE’LL WASTE SOME MORE REGISTERS:
r27 = BP. Base ptr, points into stack at the local

variables of callee
r28 = LP. Linkage ptr, return address to caller
r29 = SP. Stack ptr, points to 1st unused word

Then we can define a STACK FRAME
(aka the procedure’s Activation Record):

In case you forgot, a reminder of our problems:
1) We need a way to pass arguments into procedures
2) Procedures need their own LOCAL variables
3) Procedures need to call other procedures
4) Procedures might call themselves (Recursion)

L14 – Stacks and Procedures 106.004 - Spring 2001 4/3/01

Stack frame overview

BP:

SP:

old <LP>
old <BP>

locals
...
temps

args

(unused)

The CALLEE will use the
stack for all of the
following storage needs:

1) saving the RETURN
ADDRESS back to
the caller

2) saving the CALLER’s
base ptr

3) Creating its own
local/temp variables

In theory it’s possible to use SP to
access stack frame, but offsets will
change due to PUSHs and POPs.
For convenience we use BP so we can
use constant offsets to find, e.g.,
the first argument.

In theory it’s possible to use SP to
access stack frame, but offsets will
change due to PUSHs and POPs.
For convenience we use BP so we can
use constant offsets to find, e.g.,
the first argument.

Am I the Caller
or Callee?

L14 – Stacks and Procedures 116.004 - Spring 2001 4/3/01

Stack Frame Details

caller’s local 1

caller’s local n

arg 1

arg n

old <LP>
old <BP>

local 1

local n
free space

BP:

SP:

CALLER’S
FRAME

CALLEE’S
FRAME

old old <BP>
old old <LP>

•••

•••

•••

(caller’s
return

PC)

The CALLER passes arguments
to the CALLEE on the stack in
REVERSE order

F(1,2,3,4) is translated to:
ADDC(R31,4,R0)
PUSH(R0)
ADDC(R31,3,R0)
PUSH(R0)
ADDC(R31,2,R0)
PUSH(R0)
ADDC(R31,1,R0)
PUSH(R0)
BEQ(R31, F, LP)

QUESTION: Why push args
in REVERSE order???

L14 – Stacks and Procedures 126.004 - Spring 2001 4/3/01

Order of Arguments

arg 1

arg n

old <LP>
old <BP>

local 1

local n
free space

BP:

SP:

•••

•••

1) It allows the BP to serve double duties
when accessing the local frame

To access ith local variable (i ≥≥≥≥ 1)

LD(BP, (i-1)*4, rx)
or

ST(rx, (i-1)*4, BP)
To access jth argument (j ≥≥≥≥ 1):

LD(BP, -4*(j+2), rx)
or

ST(rx, -4*(j+2), BP)

2) The CALLEE does not NEED to know how many
arguments were passed to it!

Why push args onto the stack in reverse order?

BP-((n+2)*4)

BP - 12
BP - 8
BP - 4
BP + 0

BP+((n-1)*4)

L14 – Stacks and Procedures 136.004 - Spring 2001 4/3/01

Procedure Linkage: The Contract

The CALLER will:

• Push args onto stack, in reverse order.

• Branch to callee, putting return address into LP.

• Remove args from stack on return.

The CALLEE will:

• Perform promised computation, leaving result in R0.

• Branch to return address.

• Leave stacked data intact, including stacked args.

• Leave regs (except R0) unchanged.

L14 – Stacks and Procedures 146.004 - Spring 2001 4/3/01

Procedure Linkage: The Fine Print

PUSH(argn) | push args, last arg first
...
PUSH(arg1) BEQ(R31,f, LP) | Call f.
DEALLOCATE(n) | Clean up!
... | (f’s return value in r0)

f: PUSH(LP) | Save LP and BP
PUSH(BP) | in case we make new calls.
MOVE(SP,BP) | set BP=frame base
ALLOCATE(nlocals) | allocate locals
(push other regs) | preserve any regs used

(pop other regs) | restore regs
MOVE(val, R0) | set return value
MOVE(BP,SP) | strip locals, etc
POP(BP) | restore CALLER’s linkage
POP(LP) | (the return address)
JMP(LP,R31) | return.

Calling
Sequence
Calling

Sequence

Entry
Sequence

Entry
Sequence

Return
Sequence
Return

Sequence

Where’s the
Deallocate?

L14 – Stacks and Procedures 156.004 - Spring 2001 4/3/01

Our favorite subroutine…
fact: PUSH(LP) | save linkages

PUSH(BP)
MOVE(SP,BP) | new frame base
PUSH(r1) | preserve regs
LD(BP,-12,r1) | r1 ←←←← n
BNE(r1,big) | if (n == 0)
ADDC(r31,1,r0) | else return 1;
BR(rtn)

big: SUBC(r1,1,r1) | r1 ←←←← (n-1)
PUSH(r1) | push arg1
BR(fact,LP) | fact(n-1)
DEALLOCATE(1) | pop arg1
LD(BP,-12,r1) | r0 ←←←← n
MUL(r1,r0,r0) | r0 ←←←← n*fact(n-1)

rtn: POP(r1) | restore regs
MOVE(BP,SP) | Why?
POP(BP) | restore links
POP(LP)
JMP(LP,R31) | return.

int fact(int n)
{

if (n == 0)
return n*fact(n-1);

else
return 1;

}

Finally, Factorial works!
Now are we done?

L14 – Stacks and Procedures 166.004 - Spring 2001 4/3/01

This Scheme Supports Recursion

fact(3) ...

n=0

n=1

n=2

n=3
Caller

fact(3)

fact(2)

fact(1)

fact(0)higher
addresses

lower
addresses

STACK
BUILDS

THIS
WAY

L14 – Stacks and Procedures 176.004 - Spring 2001 4/3/01

Man vs. Machine
Here’s a C program which was fed to the C compiler*.

Can you generate code as good as it did?

int ack(int i, int j)
{
if (i == 0) return 2*j;
if (j == 0) return i+1;
return ack(i-1, ack(i, j-1));

}
* GCC Port courtesy of Cotton Seed & Pat LoPresti;

available on Athena
Athena% attach 6.004
Athena% gcc-beta -S -O2 file.c

L14 – Stacks and Procedures 186.004 - Spring 2001 4/3/01

Tough Problems
1. NON-LOCAL variable access, particularly in nested

procedure definitions.

"FUNarg" problem of LISP.

Conventional solution: “static links” in stack frames,
pointing to frames of statically enclosing blocks. This
allows a run-time discipline which correctly accesses
variables in enclosing blocks.

ANALOG: LISP Environments, closures.
[Optional reading: Ward & Halstead section 14.8, p. 400]

(C avoids this problem by outlawing nested procedure
declarations!)

2. "Dangling References" - - -

int x, y, z;

g(int x) {
int z;

f(int x) {
int y;
…
z = x * y;

}

…
f(4);

}

L14 – Stacks and Procedures 196.004 - Spring 2001 4/3/01

Dangling References

int *p; /* a pointer */
int h(x)
{

int y = x*3;
p = &y;
return 37;

}
h(10);
print(*p); X=10

old <LP>
old <BP>

Y=30

(TEMPS)
h(10)

P = ?
caller

P = ?
caller

?

(TEMPS)

(unused
space)What do we expect

to be printed?

L14 – Stacks and Procedures 206.004 - Spring 2001 4/3/01

The Word on Dangling References
Java & PASCAL: kiddie scissors only.

No "ADDRESS OF" operator: language restrictions forbid
constructs which could lead to dangling references.

C and C++: real tools, real dangers.
”You get what you deserve".

SCHEME/LISP: throw cycles at it.
Activation records allocated from a HEAP, reclaimed

transparently by garbage collector (at considerable cost).
“You get what you pay for”
Of course, there’s a stack hiding there somewhere...

L14 – Stacks and Procedures 216.004 - Spring 2001 4/3/01

Next Time: Building a Beta

ack: PUSH (LP)
PUSH (BP)
MOVE (SP, BP)
PUSH (R1)
PUSH (R2)
LD (BP, -12, R2)
LD (BP, -16, R0)

_36: BNE (R2, _34)
SHLC (R0, 1, R0)
BR (_37)

_34: BEQ (R0, _35)
SUBC (R2, 1, R1)
SUBC (R0, 1, R0)
PUSH (R0)
PUSH (R2)
BR (ack, LP)
MOVE (R1, R2)
SUBC (SP, 8, SP)
BR (_36)

_35: ADDC (R2, 1, R0)
_37: POP (R2)

POP (R1)
POP (BP)
POP (LP)
JMP (LP)

ack: PUSH (LP)
PUSH (BP)
MOVE (SP, BP)
PUSH (R1)
PUSH (R2)
LD (BP, -12, R2)
LD (BP, -16, R0)

_36: BNE (R2, _34)
SHLC (R0, 1, R0)
BR (_37)

_34: BEQ (R0, _35)
SUBC (R2, 1, R1)
SUBC (R0, 1, R0)
PUSH (R0)
PUSH (R2)
BR (ack, LP)
MOVE (R1, R2)
SUBC (SP, 8, SP)
BR (_36)

_35: ADDC (R2, 1, R0)
_37: POP (R2)

POP (R1)
POP (BP)
POP (LP)
JMP (LP)

I wonder where
this goes?

Ins
tru
ctio
n

Me
mo
ry

A

D

0

1

Beta Kit

ALU

A

B

