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Models of Computation: 
Programmability

Handouts: Lecture Notes, PS5 

FSM i

0 1 1 00 0 1 0 0

Is there room for
an infinite tape?
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3-Types of Processing Elements

Combinational Logic:
Table look-up, ROM

Finite State Machines:
ROM with Feedback

Pipelined Processing:
ROM with storage for
intermediate results

Thus far, we know of nothing 
more powerful than an FSM

Addr   Datai o

Addr   Data

i o

s

Addr   Datai o

Fundamentally,
everything
that we’ve

learned so far
can be done
with a ROM
and registers
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FSMs as Programmable Machines
ROM-based FSM sketch:

Given i, s, and o,we need a ROM 
organized as:

2i+s words x (o+s) bits

So how many possible
i-input,
o-output,
FSMs with
s-state bits
exist?

i

s

0...01
0...00 0...00 10110 011

o

2i+s

sN+1 osNi
inputs outputs

2 (o+s)2i+s

(some may be
equivalent)

An FSM’s behavior is completely 
determined by its ROM contents.
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FSM Enumeration
GOAL: List all possible FSMs in 

some canonical order.
• INFINITE list, but
• Every FSM has an entry in     
and an associated index.

0...01
0...00 0...00 10110 011

sN+1osNi
inputs outputs

i s o FSM# Truth Table 
1 1 1 1 00000000 
1 1 1 2 00000001 
   … … 
1 1 1 256 11111111 
2 2 2 257 000000…000000 
2 2 2 258 000000…000001 
   … … 
3 3 3  000000…000000 
   …  
4 4 4  000000…000000 
     

 
 

28

FSMs

264

Every possible FSM can be
associated with a number.
We can discuss the ith FSM
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Some Perennial Favorites...
FSM837 modulo 3 counter
FSM1077 4-bit counter
FSM1537 lock for 6.004 Lab
FSM89143 Cheap digital watch
FSM22698469884 Intel Pentium CPU – rev 1
FSM784362783 Intel Pentium CPU – rev 2
FSM784363783 Intel Pentium II CPU



Models of Computation   66.004 - Spring 2001 3/15/01

Are FSMs the ULTIMATE
computation device?

There exist common problems that cannot be computed by
FSMs. For instance:

Checking for balanced parenthesis
(()(()())) - Okay 
(()())) - No good!

PROBLEM: Requires ARBITRARILY many states, depending on 
input.   Must "COUNT" unmatched LEFT parens. An FSM can only 
keep track of a finite number of objects.

Do we know of a machine that can solve this problem?
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Yes, Roboant can!
State Input Crumb? Crumb Move

Next
State Comment

S1 ( - Y R S1 Mark open paren
S1 ) - Y L S2 Mark close paren
S1 sp - N L S4 Reached end
S2 - N N L S2 Scan back to last open
S2 - Y N R S3 Eat crumb
S3 - N N R S3 Goto close paren
S3 - Y N R S1 Eat crumb
S4 ( or ) N N L S4 Move Left
S4 ( or ) Y N L S5 Unmatched/Eat
S4 sp - Y L Halt Matched
S5 ( or ) - N L S5 Unmatched/Eat
S5 sp - N L Halt Unmatched

( ( ( ( ) ( ) ) ) )

What is it that makes Roboant so powerful? RoboAnt is very FSM-like. 
Is there exist some extension to an FSM that allows it to “compute” more?
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Unbounded-Space Computation
DURING 1920s & 1930s, much of the 

“science” part of computer science 
was being developed (long before 
actual electronic computers existed). 
Many different 

“Models of Computation”
were proposed, and the classes of 
“functions” which could be computed 
by each were analyzed.

One of these models was the TURING 
MACHINE named after Alan Turing.

A Turing Machine is just an FSM which 
receives its inputs and writes 
outputs onto an infinite tape... 

Solves "FINITE" problem of FSMs.
Alan Turing

S1

1 1 1 00 0 0 1 0 0 0 00 0 0 0

S2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)
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A Turing Machine Example
Turing Machine Specification
• Doubly-infinite tape
• Discrete symbol positions
• Finite alphabet – say {0, 1}
• Control FSM

INPUTS:
Current symbol

OUTPUTS:
write 0/1
move Left/Right

• Initial Starting State {S0}
• Halt State {Halt}

Current 
State 

Tape 
Input 

Write 
Tape 

 
Move 

Next 
State 

S0 1 1 R S0 
S0 0 1 L S1 
S1 1 1 L S1 
S1 0 0 R Halt 

 
 

A Turing machine, like an FSM,
can be specified with a truth 
table.  The following Turing 
Machine implements a unary 
(base 1) incrementer.

0 0 0 0 1 1 1 1 0 01
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Turing Machine Tapes
as Integers

Canonical names for bounded tape configurations:

FSM i

0 1 1 00 0 1 0 0

Look, it’s just FSM i
operating on tape j

b8 b6 b4 b2 b0 b1 b3 b5 b7
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TMs as Integer Functions
Turing Machine Ti operating on Tape x,

where x = …b8b7b6b5b4b3b2b1b0

I wonder if a TM can compute
EVERY integer function...

y   =   T  [x]i
x:  input tape configuration 
y: output tape configuration



Models of Computation   126.004 - Spring 2001 3/15/01

Alternative Models of Computation
Turing Machines [Turing]

FSMi

0 1 1 00 0 1 0 0

Turing

Lambda calculus [Church, Curry, Rosser...]

?x.?y.xxy

(lambda(x)(lambda(y)(x (x y))))

Church

Recursive Functions [Kleene]
F(0,x) ?  x
F(1+y,x) ?  1+F(x,y) 

(define (fact n)
(... (fact (- n 1)) ...)

Kleene

Production Systems [Post, Markov]

? ? ?
IF pulse=0 THEN

patient=dead

Post
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The 1st Computer Industry Shakeout
Here’s a TM that

computes SQUARE ROOT!

FSM

0 1 1 00 0 1 0 0
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And the Battles Raged
Here’s a Lambda Expression
that does the same thing...

... and here’s one that computes
the nth root for ANY n!

(?(x) .....)

(?(x n) .....)
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Fundamental Result #1: 
Computable Functions

Each model is capable of computing exactly the same 
set of integer functions!

Proof Technique: Constructions that
translate between
models

BIG IDEA: Computability,
independent of
computation scheme
chosen

Church's Thesis:

Every discrete function computable
by ANY  realizable machine is

computable by some Turing machine.

Does,this
mean that
we know of
no computer
that is more
“powerful”

than a
Turing

machine?
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Computable Functions

Representation tricks: to compute fk(x,y)
<x,y>  ??integer whose even bits come from x, and whose 

odd  bits come from y; whence

f12345(x,y) = x * y
f23456(x) = 1 iff x is prime, else 0

f(x) computable <=> for some k, all x:
f(x) = TK[x]      fK(x)

fK(x, y)    TK[<x, y>]
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Enumeration of Computable Functions
Conceptual table of TM behaviors... 

VERTICAL AXIS: Enumeration of TMs.
HORIZONTAL AXIS: Enumeration of input tapes.

(j, k) entry = result of TMk[j] -- integer, or * if never halts.

The Halting Problem: Given j, k: Does TMk Halt with input j?

fi
f0
f1

fk(j)fk

fi(0) fi(1) fi(2) fi(j)••• •••

•••

•••

37 23

*62
*

•••••••••

•••••••••••••••

•••

•••

•••

•••

••• ••• ••• •••
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The Halting Problem
The Halting Function: TH[k, j] = 1 iff TMk[j] halts, else 0

Can a Turing machine compute this function?

x

y
TH

1 iff Tx[y] HALTS
0 otherwise

Suppose TH  exists:

Then we can build a TNasty:

TH?
LOOP

HALT

1

0
k

TNasty[k] 
LOOPS if Tk[k] halts
HALTS if Tk[k] loops

If TH is
computable
then so is 

TNasty

N1

NH

1,(1,L)

0,(0,L)
N2

-,(0,R)

Replace the
Halt state
of TH with
this.
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What does TNasty[Nasty] do?
Answer: 

TNasty[Nasty] loops if TNasty[Nasty] halts
TNasty[Nasty] halts if TNasty[Nasty] loops

That’s a contradiction. 
Thus, TH is uncomputable by a Turing Machine!

There are some questions that Turing Machines 
simply cannot answer. Since, we know of no better 
model of computation than a Turing machine, this 
implies that there are some questions that defy 
computation.
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Too many Turing machines!

FSM

0 1 1 00 0 1 0 0

Multiplication

FSM

0 1 1 00 0 1 0 0

Sorting

FSM

0 1 1 00 0 1 0 0

Factorization FSM

0 1 1 00 0 1 0 0

Primality Test

Is there an
alternative to

ad-hoc
Turing Machines?
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Program as “Input”
What if we encoded the description of the FSM on our tape, and
then wrote a general purpose FSM to read the tape and emulate
the behavior of the encoded machine? Since the FSM is just a
look-up table, and our machine can make reference to it as often 
as it likes, it seems possible that such a machine could be built.

x

y
UTx[y]
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Fundamental Result #2: 
Universality

Define "Universal Function“: U(x,y) = TX(y) for every x, y …
Surprise! U is computable,

hence U(x,y) = TU(<x,y>) for some U.

Universal Turing Machine (UTM):

"program"
"data"

"interpreter"

PARADIGM  for General-Purpose Computer!

TU [<y,  z>] = TY[z]

INFINITELY many UTMs ... 
Any one of them can
evaluate any computable
function by simulating/
emulating/interpreting
the actions of Turing
machine given to it
as an input.

UNIVERSALITY:
Basic requirement
for a general purpose
computer
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Demonstrating Universality
Suppose you've designed Turing Machine TK and want to show that its universal.

APPROACH:
1. Find some known universal machine, say TU.
2. Devise a program, P, to simulate TU on TK:

TK[<P,x>] = TU[x] for all x.
3. Since TU[<y,z>] = TY[z], it follows that, for all y and z.

CONCLUSION: Armed with program P, machine TK can mimic the behavior 
of an arbitrary machine TY operating on an arbitrary input tape z.

HENCE TK can compute any function that can be computed by any Turing 
Machine.

TK [<P,<y,z>>]  =  TU[<y,z>]  =  TY[z]
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Interpretive Layers: What’s going on?

Multiple levels of interpretation:
Ty[z] Application (Desired user function)
TU[<y,z>] Portable Language / Virtual Machine
TK[<P,<y,z>>] Computing Hardware / Bare Metal

Benefits of Interpretation:
BOOTSTRAP high-level functionality on very simple hardware.

Deal with “IDEAL”  machines rather than real machines.

REAL MACHINES are built this way  - several interpretive layers.

TK [<P,<y,z>>]  =  TU[<y,z>]  =  TY[z]
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Power of Interpretation
BIG IDEA: Manipulate coded representations of computing 

machines, rather than the machines themselves.

• PROGRAM as a behavioral description
• SOFTWARE vs. HARDWARE
• INTERPRETER as machine which takes program and 

mimics behavior it describes
• LANGUAGE as interface between interpreter and 

program
• COMPILER as translator between languages:

INTELLECTUAL BENEFITS:
• Programs as data -- mathematical objects
• Combination, composition, generation,

parameterization, etc.
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Reality: Limits of Turing Machines

These formal abstractions address

• Fundamental Limits of Computability

• Basic ideas: Interpretation, Algorithm

But they ignore

• Practical coding of programs

• Performance

• Implementability

• Programmability

... these latter issues are the primary focus of 
contemporary computer science  (6.001, 6.004)
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Next time:
Designing an Instruction Set

Smells a lot
like software

to me

It’s about
time!


