
Models of Computation 16.004 - Spring 2001 3/15/01

Models of Computation:
Programmability

Handouts: Lecture Notes, PS5

FSM i

0 1 1 00 0 1 0 0

Is there room for
an infinite tape?

Models of Computation 26.004 - Spring 2001 3/15/01

3-Types of Processing Elements

Combinational Logic:
Table look-up, ROM

Finite State Machines:
ROM with Feedback

Pipelined Processing:
ROM with storage for
intermediate results

Thus far, we know of nothing
more powerful than an FSM

Addr Datai o

Addr Data

i o

s

Addr Datai o

Fundamentally,
everything
that we’ve

learned so far
can be done
with a ROM
and registers

Models of Computation 36.004 - Spring 2001 3/15/01

FSMs as Programmable Machines
ROM-based FSM sketch:

Given i, s, and o,we need a ROM
organized as:

2i+s words x (o+s) bits

So how many possible
i-input,
o-output,
FSMs with
s-state bits
exist?

i

s

0...01
0...00 0...00 10110 011

o

2i+s

sN+1 osNi
inputs outputs

2 (o+s)2i+s

(some may be
equivalent)

An FSM’s behavior is completely
determined by its ROM contents.

Models of Computation 46.004 - Spring 2001 3/15/01

FSM Enumeration
GOAL: List all possible FSMs in

some canonical order.
• INFINITE list, but
• Every FSM has an entry in
and an associated index.

0...01
0...00 0...00 10110 011

sN+1osNi
inputs outputs

i s o FSM# Truth Table
1 1 1 1 00000000
1 1 1 2 00000001
 … …
1 1 1 256 11111111
2 2 2 257 000000…000000
2 2 2 258 000000…000001
 … …
3 3 3 000000…000000
 …
4 4 4 000000…000000

28

FSMs

264

Every possible FSM can be
associated with a number.
We can discuss the ith FSM

Models of Computation 56.004 - Spring 2001 3/15/01

Some Perennial Favorites...
FSM837 modulo 3 counter
FSM1077 4-bit counter
FSM1537 lock for 6.004 Lab
FSM89143 Cheap digital watch
FSM22698469884 Intel Pentium CPU – rev 1
FSM784362783 Intel Pentium CPU – rev 2
FSM784363783 Intel Pentium II CPU

Models of Computation 66.004 - Spring 2001 3/15/01

Are FSMs the ULTIMATE
computation device?

There exist common problems that cannot be computed by
FSMs. For instance:

Checking for balanced parenthesis
(()(()())) - Okay
(()())) - No good!

PROBLEM: Requires ARBITRARILY many states, depending on
input. Must "COUNT" unmatched LEFT parens. An FSM can only
keep track of a finite number of objects.

Do we know of a machine that can solve this problem?

Models of Computation 76.004 - Spring 2001 3/15/01

Yes, Roboant can!
State Input Crumb? Crumb Move

Next
State Comment

S1 (- Y R S1 Mark open paren
S1) - Y L S2 Mark close paren
S1 sp - N L S4 Reached end
S2 - N N L S2 Scan back to last open
S2 - Y N R S3 Eat crumb
S3 - N N R S3 Goto close paren
S3 - Y N R S1 Eat crumb
S4 (or) N N L S4 Move Left
S4 (or) Y N L S5 Unmatched/Eat
S4 sp - Y L Halt Matched
S5 (or) - N L S5 Unmatched/Eat
S5 sp - N L Halt Unmatched

(((() ())))

What is it that makes Roboant so powerful? RoboAnt is very FSM-like.
Is there exist some extension to an FSM that allows it to “compute” more?

Models of Computation 86.004 - Spring 2001 3/15/01

Unbounded-Space Computation
DURING 1920s & 1930s, much of the

“science” part of computer science
was being developed (long before
actual electronic computers existed).
Many different

“Models of Computation”
were proposed, and the classes of
“functions” which could be computed
by each were analyzed.

One of these models was the TURING
MACHINE named after Alan Turing.

A Turing Machine is just an FSM which
receives its inputs and writes
outputs onto an infinite tape...

Solves "FINITE" problem of FSMs.
Alan Turing

S1

1 1 1 00 0 0 1 0 0 0 00 0 0 0

S2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

Models of Computation 96.004 - Spring 2001 3/15/01

A Turing Machine Example
Turing Machine Specification
• Doubly-infinite tape
• Discrete symbol positions
• Finite alphabet – say {0, 1}
• Control FSM

INPUTS:
Current symbol

OUTPUTS:
write 0/1
move Left/Right

• Initial Starting State {S0}
• Halt State {Halt}

Current
State

Tape
Input

Write
Tape

Move

Next
State

S0 1 1 R S0
S0 0 1 L S1
S1 1 1 L S1
S1 0 0 R Halt

A Turing machine, like an FSM,
can be specified with a truth
table. The following Turing
Machine implements a unary
(base 1) incrementer.

0 0 0 0 1 1 1 1 0 01

Models of Computation 106.004 - Spring 2001 3/15/01

Turing Machine Tapes
as Integers

Canonical names for bounded tape configurations:

FSM i

0 1 1 00 0 1 0 0

Look, it’s just FSM i
operating on tape j

b8 b6 b4 b2 b0 b1 b3 b5 b7

Models of Computation 116.004 - Spring 2001 3/15/01

TMs as Integer Functions
Turing Machine Ti operating on Tape x,

where x = …b8b7b6b5b4b3b2b1b0

I wonder if a TM can compute
EVERY integer function...

y = T [x]i
x: input tape configuration
y: output tape configuration

Models of Computation 126.004 - Spring 2001 3/15/01

Alternative Models of Computation
Turing Machines [Turing]

FSMi

0 1 1 00 0 1 0 0

Turing

Lambda calculus [Church, Curry, Rosser...]

?x.?y.xxy

(lambda(x)(lambda(y)(x (x y))))

Church

Recursive Functions [Kleene]
F(0,x) ? x
F(1+y,x) ? 1+F(x,y)

(define (fact n)
(... (fact (- n 1)) ...)

Kleene

Production Systems [Post, Markov]

? ? ?
IF pulse=0 THEN

patient=dead

Post

Models of Computation 136.004 - Spring 2001 3/15/01

The 1st Computer Industry Shakeout
Here’s a TM that

computes SQUARE ROOT!

FSM

0 1 1 00 0 1 0 0

Models of Computation 146.004 - Spring 2001 3/15/01

And the Battles Raged
Here’s a Lambda Expression
that does the same thing...

... and here’s one that computes
the nth root for ANY n!

(?(x))

(?(x n))

Models of Computation 156.004 - Spring 2001 3/15/01

Fundamental Result #1:
Computable Functions

Each model is capable of computing exactly the same
set of integer functions!

Proof Technique: Constructions that
translate between
models

BIG IDEA: Computability,
independent of
computation scheme
chosen

Church's Thesis:

Every discrete function computable
by ANY realizable machine is

computable by some Turing machine.

Does,this
mean that
we know of
no computer
that is more
“powerful”

than a
Turing

machine?

Models of Computation 166.004 - Spring 2001 3/15/01

Computable Functions

Representation tricks: to compute fk(x,y)
<x,y> ??integer whose even bits come from x, and whose

odd bits come from y; whence

f12345(x,y) = x * y
f23456(x) = 1 iff x is prime, else 0

f(x) computable <=> for some k, all x:
f(x) = TK[x] fK(x)

fK(x, y) TK[<x, y>]

Models of Computation 176.004 - Spring 2001 3/15/01

Enumeration of Computable Functions
Conceptual table of TM behaviors...

VERTICAL AXIS: Enumeration of TMs.
HORIZONTAL AXIS: Enumeration of input tapes.

(j, k) entry = result of TMk[j] -- integer, or * if never halts.

The Halting Problem: Given j, k: Does TMk Halt with input j?

fi
f0
f1

fk(j)fk

fi(0) fi(1) fi(2) fi(j)••• •••

•••

•••

37 23

*62
*

•••••••••

•••••••••••••••

•••

•••

•••

•••

••• ••• ••• •••

Models of Computation 186.004 - Spring 2001 3/15/01

The Halting Problem
The Halting Function: TH[k, j] = 1 iff TMk[j] halts, else 0

Can a Turing machine compute this function?

x

y
TH

1 iff Tx[y] HALTS
0 otherwise

Suppose TH exists:

Then we can build a TNasty:

TH?
LOOP

HALT

1

0
k

TNasty[k]
LOOPS if Tk[k] halts
HALTS if Tk[k] loops

If TH is
computable
then so is

TNasty

N1

NH

1,(1,L)

0,(0,L)
N2

-,(0,R)

Replace the
Halt state
of TH with
this.

Models of Computation 196.004 - Spring 2001 3/15/01

What does TNasty[Nasty] do?
Answer:

TNasty[Nasty] loops if TNasty[Nasty] halts
TNasty[Nasty] halts if TNasty[Nasty] loops

That’s a contradiction.
Thus, TH is uncomputable by a Turing Machine!

There are some questions that Turing Machines
simply cannot answer. Since, we know of no better
model of computation than a Turing machine, this
implies that there are some questions that defy
computation.

Models of Computation 206.004 - Spring 2001 3/15/01

Too many Turing machines!

FSM

0 1 1 00 0 1 0 0

Multiplication

FSM

0 1 1 00 0 1 0 0

Sorting

FSM

0 1 1 00 0 1 0 0

Factorization FSM

0 1 1 00 0 1 0 0

Primality Test

Is there an
alternative to

ad-hoc
Turing Machines?

Models of Computation 216.004 - Spring 2001 3/15/01

Program as “Input”
What if we encoded the description of the FSM on our tape, and
then wrote a general purpose FSM to read the tape and emulate
the behavior of the encoded machine? Since the FSM is just a
look-up table, and our machine can make reference to it as often
as it likes, it seems possible that such a machine could be built.

x

y
UTx[y]

Models of Computation 226.004 - Spring 2001 3/15/01

Fundamental Result #2:
Universality

Define "Universal Function“: U(x,y) = TX(y) for every x, y …
Surprise! U is computable,

hence U(x,y) = TU(<x,y>) for some U.

Universal Turing Machine (UTM):

"program"
"data"

"interpreter"

PARADIGM for General-Purpose Computer!

TU [<y, z>] = TY[z]

INFINITELY many UTMs ...
Any one of them can
evaluate any computable
function by simulating/
emulating/interpreting
the actions of Turing
machine given to it
as an input.

UNIVERSALITY:
Basic requirement
for a general purpose
computer

Models of Computation 236.004 - Spring 2001 3/15/01

Demonstrating Universality
Suppose you've designed Turing Machine TK and want to show that its universal.

APPROACH:
1. Find some known universal machine, say TU.
2. Devise a program, P, to simulate TU on TK:

TK[<P,x>] = TU[x] for all x.
3. Since TU[<y,z>] = TY[z], it follows that, for all y and z.

CONCLUSION: Armed with program P, machine TK can mimic the behavior
of an arbitrary machine TY operating on an arbitrary input tape z.

HENCE TK can compute any function that can be computed by any Turing
Machine.

TK [<P,<y,z>>] = TU[<y,z>] = TY[z]

Models of Computation 246.004 - Spring 2001 3/15/01

Interpretive Layers: What’s going on?

Multiple levels of interpretation:
Ty[z] Application (Desired user function)
TU[<y,z>] Portable Language / Virtual Machine
TK[<P,<y,z>>] Computing Hardware / Bare Metal

Benefits of Interpretation:
BOOTSTRAP high-level functionality on very simple hardware.

Deal with “IDEAL” machines rather than real machines.

REAL MACHINES are built this way - several interpretive layers.

TK [<P,<y,z>>] = TU[<y,z>] = TY[z]

Models of Computation 256.004 - Spring 2001 3/15/01

Power of Interpretation
BIG IDEA: Manipulate coded representations of computing

machines, rather than the machines themselves.

• PROGRAM as a behavioral description
• SOFTWARE vs. HARDWARE
• INTERPRETER as machine which takes program and

mimics behavior it describes
• LANGUAGE as interface between interpreter and

program
• COMPILER as translator between languages:

INTELLECTUAL BENEFITS:
• Programs as data -- mathematical objects
• Combination, composition, generation,

parameterization, etc.

Models of Computation 266.004 - Spring 2001 3/15/01

Reality: Limits of Turing Machines

These formal abstractions address

• Fundamental Limits of Computability

• Basic ideas: Interpretation, Algorithm

But they ignore

• Practical coding of programs

• Performance

• Implementability

• Programmability

... these latter issues are the primary focus of
contemporary computer science (6.001, 6.004)

Models of Computation 276.004 - Spring 2001 3/15/01

Next time:
Designing an Instruction Set

Smells a lot
like software

to me

It’s about
time!

