ASICs...THE COURSE (1 WEEK)

ASIC LIBRARY 3
DESIGN

Key concepts: Tau, logical effort, and the prediction of delay ¢ Sizes of cells, and their drive
strengths « Cell importance * The difference between gate-array macros, standard cells, and

datapath cells

ASIC design uses predefined and precharacterized cells from a library—so we need to
design or buy a cell library. A knowledge of ASIC library design is not necessary but makes
it easier to use library cells effectively.

3.1 Transistors as Resistors

—tppf
0'35VDD = VDD exp

de (Cout + Cp)

An output trip point of 0.35 is convenient because In(1/0.35)=1.04»1 and thus
tppt = Rpd(Cout * Cp) In (1/0.35) » Rpg(Coyt + Cp)
For output trip points of 0.1/0.9 we multiply by —In(0.1) = 2.3, because exp (-2.3) =0.100
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A linear model for CMOS logic delay

* Ideal switches = no delay * Resistance and capacitance causes delay

* Load capacitance, Cq * parasitic output capacitance, C, * input capacitance, C

* Linearize the switch resistance < Pull-up resistance, Ry, ¢ pull-down resistance, Rpq
* Measure and compare the input, v(i n1) and output, v( out 1)

* Input trip point of 0.5 « output trip points are 0.35 (falling) and 0.65 (rising)

* The linear prop—ramp model: falling propagation delay, tpp»Rpq(Cp+Coyt)
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CMOS inverter characteristics

* Equilibrium switching

» Non-equilibrium switching

* Nonlinear switching resistance

» Switching current

v(outl)/V
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3.2 Transistor Parasitic Capacitance
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Transistor parasitic capacitance

» Constant overlap capacitances Cggoy, Copovs and Cgrov

* Variable capacitances Cgg, Cgp, and Cgp depend on the operating region

* Cgg and Cpp are the sum of the area (Cggj, Cgpj), sidewall (Cgssw: Cgpsw), and chan-

nel edge (Cgsygate: CBDIGATE) Capacitances

* Lp is the lateral diffusion « Tgoy is the field-oxide thickness
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NANVE mil n2

MODEL CMOSN CMOSP

I D 7.49E-11 -7.49E-11
VGS 0. 00E+00 - 3. 00E+00
VDS 3. 00E+00 -4. 40E- 08
VBS 0. O0E+00 0. OOE+00
VTH 4. 14E-01 - 8. 96E-01
VDSAT 3.51E-02 -1. 78E+00
GV 1. 75E-09 2.52E-11
GDS 1. 24E-10 1. 72E-03
GvB 6. 02E-10 7.02E-12
CBD 2. 06E-15 1. 71E- 14
CBS 4. 45E- 15 1. 71E- 14
CGSov 1. 80E- 15 2. 88E-15
CGDOV 1. 80E-15 2. 88E-15
CEBOvV 2. 00E- 16 2. 01E-16
CGS 0. 00E+00 1. 10E- 14
CGD 0. OOE+00 1. 10E- 14
CGB 3. 88E-15 0. OOE+00

* I D(Ips), VGS, VDS, VBS, VTH (Vy), and VDSAT (Vpg(sat)) are DC parameters

* GV GDS, and GVB are small-signal conductances (corresponding to flps/fVgs:.
Mps/MVps, and lps/fVgs, respectively)
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Calculations of parasitic capacitances for an n-channel MOS transistor.

PSpice

Equation

Val Uesl for VGSZOV, VDS =3V, VSB =0V

CBD

Cep =Cgpy + Cepsw
Cgpy+Ap Cy (1 +Vpglfg)™ (fg =
PB)

Cgpsw = Pp Csw (1 +Vpg/f gy ™=W
(Pp may or may not include channel
edge)

Cgp=1.855" 10713+2.04" 10716=2.06"
1018 F
Cpgpj = (4.032" 107%)(1 +(3/1)) %6 =1.86"
1071 F

Cepsw = (4.27 10710)(1 + (3/2))9° =2.04"
10710 F

CBS Cps=4.032" 107°+4.2" 106 =4.45"
Cgs =Cgsy * Cassw 10715 F
AsCy=(7.2" 10719 (5.6 1074 =4.03"
Cpsy + As Cy (1 +Vgp/fg)™ 107 F
PsCisw=(8.4" 109G 10th)=42"
Cgssw = Ps Cysw (1 +Vsp/f g)™5W 1 10-16 F
CGSOV (Casov=WEerrCsso ; Wepp=W-2W e 10 16
D CGSOV = (6 10 )(3 10 ) =1.8" 10 F
GV | Copov=WerrCaso Copov=(6"10°)3 109 =18" 10°F
OBV | Copov=LerrCoro i Lerr=L—2Lp |Cgpov=(05" 10°)(4" 109 =2" 107'°F
C&  [ceg/Co =0 (off), 0.5 (lin.), 0.66 (sat.) [Co=(6" 107°)(0.5" 1075)(0.00345) =1.03"
Co (oxide capacitance) = Wgg L €ox | 10714 F
/ TOX CGS =00F
CGD CGD/CO =0 (Off), 0.5 (lln), 0 (Sat.) CGD =00F
C&EB  |Cgg=0(on), = Cqin series with Cgg |Cgp =3.88° 107° F, Cg=depletion capaci-
(off) tance
llnput |. MODEL CMOSN NMOS LEVEL=3 PHI =0. 7 TOX=10E-09 XJ=0.2U TPG=1

VTO=0. 65 DELTA=0.7

+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMVA=0. 6

NSUB=1. 4E+17 NFS=6E+11

+ VMAX=2E+05 ETA=3. 7E- 02 KAPPA=2. 9E-02 CGDO=3. OE- 10

CGS0O=3. OE- 10 CGBO=4. OE- 10

+ CJ=5. 6E-04 MJ=0.56 CISWFS5E-11 MISW-0. 52 PB=1
outl inl O O cnosn WE6U L=0. 6U AS=7. 2P AD=7. 2P PS=8. 4U

ml
PD=8. 4U
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3.2.1 Junction Capacitance
« Junction capacitances, Cgp and Cgg, consist of two parts: junction area and sidewall

» Both Cgp and Cgg have different physical characteristics with parameters: CJ and MJ
for the junction, CISWand MJ SWror the sidewall, and PB is common

» Cgp and Cgg depend on the voltage across the junction (Vpg and Vgg)

* The sidewalls facing the channel (Cggjcate @and Cgpjcate) are different from the side-
walls that face the field

* It is a mistake to exclude the gate edge assuming it is in the rest of the model—it is not
* In HSPICE there is a separate mechanism to account for the channel edge capaci-
tance (using parameters ACMand CJGATE)

3.2.2 Overlap Capacitance
* The overlap capacitance calculations for Cggoy and Cgpoy account for lateral diffusion
» SPICE parameter LD=5E- 08 or Lp=0.05mm

* Not all SPICE versions use the equivalent parameter for width reduction, WD, in calcu-
Iating CGDOV
* Not all SPICE versions subtract Wy to form Wggg

3.2.3 Gate Capacitance
» The gate capacitance depends on the operating region

» The gate—source capacitance Cgg varies from zero (off) to 0.5Cg in the linear region to
(2/3)Cq in the saturation region

» The gate—drain capacitance Cgp varies from zero (off) to 0.5Cq (linear region) and
back to zero (saturation region)

» The gate—bulk capacitance Cgp is two capacitors in series: the fixed gate-oxide capaci-
tance, Cq, and the variable depletion capacitance, Cq

* As the transistor turns on the channel shields the bulk from the gate—and Cgp falls to
zero

 Even with Vgg5=0V, the depletion width under the gate is finite and thus Cgg is less than
Co
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The variation of n-channel transistor parasitic capacitance

* PSpice v5.4 (LEVEL=3)

« Created by varying the input voltage, v(i nl), of an inverter
« Data points are joined by straight lines

* Note that CGSOv=CGDOV
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3.2.4 Input Slew Rate

(@)

[OPTIONS RELTOL=0.0001
CHGTOL=0.01f YNTOL=0.01p
ABSTOL=0.011

FWL (0nz 0% 0.04ns
2 0.5ns 3Y 0.54ns 0]
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Measuring the input capacitance of an inverter

0.8ns 1.0ns 1.2ns

(a) Input capacitance is measured by monitoring the input current to the inverter, i (Vi n)

(b) Very fast (non-equilibrium) switching: input current of 40fA = input capacitance of 40fF

(c) Very slow (equilibrium) switching: input capacitance is now equal for both transitions
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trangistors  + ASST.ZF ADSTEP transistors + &5=14F AD=14F
+ PS=8.4U PD=32 .41 + FS=14U FD=14l1 4.0U4 40ml)
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Parasitic capacitance measurement

(a) All devices in this circuit include parasitic capacitance

(b) This circuit uses linear capacitors to model the parasitic capacitance of nB/ 10.

» The load formed by the inverter (mb and n6) is modeled by a 0.0335pF capacitor (c2)

* The parasitic capacitance due to the overlap of the gates of n8 and m4 with their source,
drain, and bulk terminals is modeled by a 0.01pF capacitor (c3)

 The effect of the parasitic capacitance at the drain terminals of n8 and n¥ is modeled by a
0.025pF capacitor (c4)

(c) Comparison of (a) and (b). The delay (1.22-1.135=0.085ns) is equal to tpps for the in-
verter nB/ 4

(d) An exact match would have both waveforms equal at the 0.35 trip point (1.05V).
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3.3 Logical Effort

We extend the prop—ramp model with a “catch all” term, tg, that includes:
* delay due to internal parasitic capacitance
» the time for the input to reach the switching threshold of the cell

* the dependence of the delay on the slew rate of the input waveform

tpp = R(Coyt + Cp) + tq
We can scale any logic cell by a scaling factor s: tpp = (R/s)(Cqyt +SCp) + sty

Cout
tpp= RC + RCp + Stq
Cin
(RC) (Cout/ Cin) + RCp + Stq
Normalizing the delay: d = =f+p+q

t

The time constant tau, t = Ry,, Ci,,, , IS a basic property of any CMOS technology

The delay equation is the sum of three terms, d =f+p +qor
delay = effort delay + parasitic delay + nonideal delay

The effort delay f is the product of logical effort, g, and electrical effort, h: f=gh

Thus, delay = logical effort” electrical effort + parasitic delay + nonideal delay

* R and C will change as we scale a logic cell, but the RC product stays the same

* Logical effort is independent of the size of a logic cell

» We can find logical effort by scaling a logic cell to have the same drive as a 1X

minimum-size inverter

* Then the logical effort, g, is the ratio of the input capacitance, C;,,, of the 1X logic cell to

Cinv
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e

nv

minimum-size
inverter.

inv
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capacitance of a

Ciny =2+1=3 —_I__

(@)

gate capac:ltance
g

2>

i

Make the cell have the same Measure ratio of cell input

drive strength as a

minimume-size inverter.

(b)

Logical effort « For a two-input NAND cell, the logical effort, g=4/3

1X

_2+24_]T?3£N

g= Cin/Cinv: 4/3

capacitance to that of a
minimume-size inverter.

(©)

Cin

(c) The logical effort of a cell is C;,/ Cj,yy

(a) Find the input capacitance, Cj,,, looking into the input of a minimum-size inverter in
terms of the gate capacitance of a minimum-size device

(b) Size a logic cell to have the same drive strength as a minimum-size inverter (assuming
a logic ratio of 2). The input capacitance looking into one of the logic-cell terminals is then

The h depends only on the load capacitance C,,; connected to the output of the logic
cell and the input capacitance of the logic cell, C;,; thus

electrical effort h = Cy; /Cj,

parasitic delay p=RCy/t (the parasitic delay of a minimum-size inverter is: pj,, = C,/

Cinv )

nonideal delay ¢ = sty /t

Cell effort, parasitic delay, and nonideal delay (in units of t) for single-stage CMOS cells

Cell (Iocg:ieclzl regi(giz) (Iocg:g?(lzl ?;?gt:r) Parasitic delay/ | Nonideal delay/t

inverter 1 (by definition) | 1 (by definition) | p;,, (by definition) | g;,, (by definition)
n-input NAND (n+2)/3 (n+r)/(r+1) NPiny NQiny
n-input NOR (2n+1)/3 (nr+1)/(r+1) NPiny NQiny
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3.3.1 Predicting Delay
» Example: predict the delay of a three-input NOR logic cell
» 2X drive
* driving a net with a fanout of four

* 0.3pF total load capacitance (input capacitance of cells we are driving plus the inter-
connect)

* p=3pj,y and q=3q;y, for this cell
« the input gate capacitance of a 1X drive, three-input NOR logic cell is equal to gCj,,
« for a 2X logic cell, C;, =29Cj,y

Cout 9+(0.3 pF) (0.3 pF)
gh=g = = (Notice g cancels out in this equation)
Cin 29Ciny (2)-(0.036 pF)

The delay of the NOR logic cell, in units of t, is thus
0.3° 10712
d =gh+p+q = +(3)-(1) + (3)-(1.7)
(2)-(0.036 © 10712

= 4.1666667 + 3+ 5.1
= 12.266667 t equivalent to an absolute delay, tpp»12.3" 0.06ns=0.74ns

The delay for a 2X drive, three-input NOR logic cell is tpp = (0.03 + 0.72C;; + 0.60) ns

With C,;1=0.3pF, tpp = 0.03 + (0.72)-(0.3) + 0.60 = 0.846 ns compared to our prediction of
0.74ns
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3.3.2 Logical Area and Logical Efficiency

An OAI221 logic cell

 Logical-effort vector g=(7/3, 7/3,
5/3)

* The logical area is 33 logical
squares

moOwX>
N

An AOI221 logic cell
* g=(8/3, 8/3, 7/3)
* Logical area is 39 logical squares

* Less logically efficient than OAI221
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3.3.3 Logical Paths

pathdelayD= & gihj + & (pi+q)
iT path iT path

3.3.4 Multistage Cells

@ delay d1
gozl 92:14 — —
b=l  py=2 —y hg=1.4 h,=1.0
Go=1.7 dp=34 py=2 AOI221  1OL 14] AOI221
P p) Y Tt Ty 2 oo
== ZN ZN
:gﬁl AOI21 3 P — B 3 T@OT
B2 Eg B2
O gs=1 :)FL>0—IT 1.0T
- 9 ‘6) Paz? - L il h,=C
p1=3' ' 4g=1.7 201 161 4L

d1=( gghg+pg+dg) +(gohs+py+0y) +(gzhz+pa+dg) +(gshy +pg+dy)
=(17 L4 +1+1.7)+(1.4 ~ 1+2+3.4)+(1.4 ~ 0.7+ 2+3.4) +(1 ~ C  +1+1.7)=20+ C_

(b) 101 2.6] delay d1
=1 M
Jo ZN

po=1

4o=17 L 9,=(2.6, 2.6, 2.2) by i
T o= () is

L' p1=5 slightly

AOI221 g,=8.5 faster

than (a)
di=(1 "~ 2.6+1+1.7) +(1° C +5+8.5)=18.8+ C =

Logical paths « Comparison of multistage and single-stage implementations

(a) An AOI221 logic cell constructed as a multistage cell, d1 =20 + C
(b) A single-stage AOI221 logic cell, d1 =18.8 + C.
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3.3.5 Optimum Delay

path logical effort G= O G
il path
Cout
path electrical effort H= & h ——
i1 path Cin

Cout Is the load and C;j, is the first input capacitance on the path

path effort F=GH
optimum effort delay 5 = gih; = FIN
optimum path delay DA =NFWN = NGH)W+P +Q
P+Q= & Ppith,
i1 path
3.3.6 Optimum Number of Stages
Delay of N inverter stages driving
delay/(In H th effort of H = C, /C...
Stage effort ej{}fﬂ”ﬂ h)) a path effort o out/Cin
12 1
h h/(In h) 10 +
15 3.7 8
2 2.9 6
2.7 2.7 4 -
3 2.7 2
4 2.9 0 -
5 3.1 1 2 3 4 5 6 7 8 9 10
stage electrical effort, h=H 1N
10 4.3

» Chain of N inverters each with equal stage effort, f=gh

* Total path delay is Nf=Ngh=Nh, since g=1 for an inverter
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« To drive a path electrical effort H, "N=H, or NInh=InH
 Delay, Nh = hinH/Inh

* Since InH is fixed, we can only vary h/In(h)

* h/In(h) is a shallow function with a minimum at h=e»2.718
* Total delay is Ne=elnH

3.4 Library-Cell Design

* A big problem in library design is dealing with design rules
» Sometimes we can waive design rules

* Symbolic layout, sticks or logs can decrease the library design time (9 months for
Virtual Silicon—currently the most sophisticated standard-cell library)

» Mapping symbolic layout uses 10-20 percent more area (5-10 percent with compac-
tion)

* Allowing 45° layout decreases silicon area (some companies do not allow 45° layout)
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3.5 Library Architecture

(@)

14 normalized cell use
(minimum-size inverter=1)

. >
— = cell number
— ordered by
cell use
(c)
4 cell area " cell use
(minimum-size inverter=1)
0-
— = cell number
=
— ordered by
cell use

Cell library statistics

 80percent of an ASIC uses less than
20percent of the cell library

* Cell importance

* A D flip-flop (with a cell importance of 3.5)
contributes 3.5 times as much area on a typi-
cal ASIC than does an inverter (with a cell im-
portance of 1)

(b)

501 normalized cell area
i (minimume-size inverter=1)
0 T >
- = cell number
— ordered by
cell use
(d)
15 normalized cell importance
(D flip-flop=1)
0 T >
- = cell number
— ordered by
cell importance
(e)

cell use (minimume-size inverter=1)

cell importance =cell area” cell use
(D flip-flop=1)

e »

cell number
ordered by

cell use and

by cell importance

100 1
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3.6 Gate-Array Design

Key words: gate-array base cell (or base cell) « gate-array base (or base) « horizontal tracks

vertical track ¢ gate isolation  isolator transistor ¢ oxide isolation ¢ oxide-isolated gate array

contact

continuous
p-diff strip

)

© 0 N o g A~ W N P

bent gate

/

continuous
n-diff strip

contact for
isolator

/

p-well ___
contact

@)

The construction of a gate-isolated gate array
(a) The one-track-wide base cell containing one p-channel and one n-channel transistor
(b) The center base cell is isolating the base cells on either side from each other

(c) The base cell is 21 tracks high (high for a modern cell library)

)

n-well ——p»

A
—>

(b)

VDD

VSS

(©)

I e L i < s =
B O © ® N o 0~ W N B O

u n-well
u p-well
__| n-diff
\_l p-diff
I poly
El ml
D m2

B contact
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break in diffusion

1 2 3 45 6 7
poly
n-well  [] [] i ]
// contect "I T TTT]

VDD p-well p-di p-di

| J/contact
I n-well n-diff
| p-well
1 n-diff
1 p-diff
_ poly
GND I Jm

:|m2

Il contact

~

@OO\ICDU‘I-P’GSI\.)H

T
=
v P oo
o

I base cell
« >

An oxide-isolated gate-array base cell

* Two base cells, each contains eight transistors and two well contacts
» The p-channel and n-channel transistors are each 4 tracks high

* The cell is 12 tracks high (8-12 is typical for a modern library)

* The base cell is 7 tracks wide
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n-well contact

'

poly cross-under

_I n-well
_| p-well
j n-diff
_I p-diff
1 poly
m
_m2

B contact

An oxide-isolated gate-array base cell

* 14 tracks high and 4 tracks wide
* VDD (tracks 3 and 4) and GND (tracks 11 and 12) are each 2 tracks wide

* 10 horizontal routing tracks (tracks 1, 2, 5-10, 13, 14)—unusually large number for mod-

ern cells

* p-channel and n-channel polysilicon bent gates are tied together in the center of the cell

» The well contacts leave room for a poly cross-under in each base cell.
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isolator

CLK
connector

contact for _—"|

—1

VDD
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— 1 |_|J |__|
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_ CLR
L QN

7|— 1

— 1

.
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Ll:

_|_|J_|

JERANAN

L
]

i3

VSS

Flip-flop macro in a gate-isolated gate-array library

* This is an older topology for 2LM (cells for 3LM are shorter in height)

* Only the first-level metallization and contact pattern, the personalization, is shown, but
this is enough information to derive the schematic
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10

11

The SIARC/Synopsys cell-based array (CBA) basic cell
» This is CBA | for 2LM (CBA 1l is intended for 3LM and salicide proceses)
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3.6 Gate-Array Design
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A simple gate-array base cell
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3.7 Standard-Cell Design

A D flip-flop standard cell

* Performance-optimized library ¢ Area-optimized library

* Wide power buses and transistors for a performance-optimized cell
* Double-entry cell intended for a 2LM process and channel routing
* Five connectors run vertically through the cell on m2

* The extra short vertical metal line is an internal crossover

* bounding box (BB) » abutment box (AB) « physical connector « abut
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A D flip-flop from a 1.0mm standard-cell library
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3.8 Datapath-Cell Design
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3.8 Datapath-Cell Design
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A datapath D flip-flop cell
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The schematic of a datapath D flip-flop cell

A narrow datapath
(a) Implemented in a two-level metal process

(b) Implemented in a three-level metal pro-
cess
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3.9 Summary

Key concepts:

* Tau, logical effort, and the prediction of delay
» Sizes of cells, and their drive strengths
* Cell importance

* The difference between gate-array macros, standard cells, and datapath cells
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