Politehnica University Bucharest Automatic Control and Computer Science Department

Small Router Design Using

Bluespec SystemVerilog

Daian-Sova M. Filip
Master AAC

SBT Router Design 1



Politehnica University Bucharest Automatic Control and Computer Science Department

1. SBT Router Block Description

The SBT Router is a simple router which has one input port (8 bits wide) and three output ports
(also 8 bits wide). Its main functionality is to receive input data on one channel and route it to one
of the three output channels.

read_pkt_data_in
(8 bits) [ > [ > chan (8 bits)
EN_read_pkt <——— EN_chan0
I ——p» RDY_chan0
RDY_read_pkt

- [ > chant (8 bits)

<4 EN_chant
—  p» RDY_chan1t

RESETN :> chan2 (8 bits)
|

<———— EN _chan2
— p» RDY_chan2

CLK

\/

SBT ROUTER

1.1 Data Packets

Input data is organized in 8 bit packets, with the first two bits being the address bit, and the other
six being the payload (useful data). Since there are only 3 output lanes (chan0, chanl and chan2)
and the address is 2 bits wide, address 3 is illegal and packets sent to this address are discarded
(ignored).

PAYLOAD ADDR
T e, 211..0

SBT PACKET

1.2 Input Protocol

The router has a FIFO to hold the input data (8 bits wide and two bytes deep). Data is driven on the
input bus (read_pkt_data_in) as long as RDY_read_pkt signal is asserted. If this signal is deasserted
by the router, this means the FIFO is full and no more data can be put into the FIFO. When data is
driven on the input bus the EN_read_pkt signal is asserted by the data driver to let the router know
new data is available on the input bus.

SBT Router Design 2



Politehnica University Bucharest Automatic Control and Computer Science Department

1.3 Output Protocol

When the router receives data, it routes it to the proper lane (chan0, chanl or chan2). When it places
new data on one of the output lanes, it asserts RDY_chanX signal to let the receiver know that new
data is available on the corresponding lane. When the data is sampled by the receiver, the
EN_chanX signal is asserted by the receiver to let the router know that data has been sampled.
When the data is sampled, the router deletes the data from the FIFO and places the next item from
the FIFO on the proper chanX lane.

SBT Router Design 3



Politehnica University Bucharest Automatic Control and Computer Science Department

2. Implementation using Bluespec SystemVerilog (BSV)

2.1. Interface Implementation

The BST Router is implemented in Bluespec SystemVerilog (BSV). The interface of the SBT
Router is implemented as a series of methods: read_pkt as input, and chan0, chanl and chan2 as
outputs.

interface SBT Router _Interface;
/] data input (8 bits, 1 channel)
met hod Action read_pkt (Byte data_in);

/1 data output (8 bits, 3 channels)

met hod Acti onVal ue#(Byte) chanO;

met hod Acti onVal ue#(Byte) chanil;

met hod Acti onVal ue#(Byte) chan2;
endi nterface

The input interface is an Action method — it has an enable signal (EN_) which causes the related
actions to take place in the clock cycle when the EN_ signal is high, it has a ready RDY_ signal that
signals to the data driver when data can be stored into the FIFO, and it has an 8-bit argument which
is the 8-bit input data bus.

The output interface is comprised of three ActionValue methods chanX, one for each output
channel. Since they are Action methods they have an EN_ enable signal, an RDY_ ready signal, and
they return an 8-bit value which is the 8-bit output data bus.

2.2. Rules

The logic of the SBT Router is implemented using rules, which call the interface methods.

rul e route_pkt;
let first_elem= input_fifo.first;
let addr = first_elen1:0];

if (addr == 2'b00) chanO_fifo.enq(input_fifo.first);
if (addr == 2'b01) chanl fifo.enq(input fifo.first);
if (addr == 2'bl10) chan2 fifo.enq(input fifo.first);

if (addr !'= 2'bll)
$di splay ("*%* [SBT] Forwarding to CHANNEL: % - DATA: %",
cl ock, addr, first_elen{7:2]);

el se
$di splay ("*%d* [SBT] Discarding packet with bad address -
DATA: % | ADDR %", clock, first_elen{7:2], addr);

i nput _fifo.deq;
endrul e

SBT Router Design 4



Politehnica University Bucharest Automatic Control and Computer Science Department

The route_pkt rule implements the forwarding of data from the input FIFO to one of the output
FIFOs, if the address is valid (0, 1 or 2).

2.3. Simulating

The SBT Router is instantiated in a top-level module mkTOP. This module acts as driver (sends
data to the router) and as receiver (takes data from the router). This behavior is implemented using
rules.

rul e send_dat a;
$display ("*%d* [TOP I] Sending DATA % | ADDR %", clock, data[7:2],
data[ 1: 0]);
router.read_pkt (data);
router.packet_valid(1l);

if (data[1:0] != 2'bll) count <= count + 1;

data <= data + 5;
endrul e

rul e read_chan0;
Byte a <- router.chanO;
count <= count - 1;

$di splay ("*%d* [TOP 0] ChanO receiving DATA % | ADDR %", clock, a[7:2],
a[1:0]);
endrul e

The send_data rule prepares a value data to be sent to the router and on every cycle when it can
send (the RDY_ signal of the read_pkt method of the router is asserted) it places the data on the
input bus.

The read_chanX rule reads a value from the corresponding channel of the router when the RDY_
signal of the chanX method is asserted.

These rules will only fire is the their implicit conditions are met. These RDY_ signals are part of the

implicit conditions of these rules because the RDY _ signals show when the intended actions can be
performed.

SBT Router Design 5



Politehnica University Bucharest Automatic Control and Computer Science Department

3. BSV Code

3.1. SBT Router.bsv

[l File:

/] Description

SBT _Rout er. bsv

contai ns BSV code for the SBT Router

package SBT_Rout er

i mport FIFO :

* .
1

typedef bit[7:0] Byte;

interface SBT _Router_Interface;
/] data input (8 bits, 1 channel)
met hod Action read_pkt (Byte data_in);

/1 data output (8 bits, 3 channels)
met hod Acti onVal ue#(Byte) chanO;
met hod Acti onVal ue#(Byte) chanl
met hod ActionVal ue#(Byte) chan2;

endi nt er f ace

(* synthesize *)
modul e nkSBT_Rout er (SBT_Router _Interface);

/1 FIFO defi
FI FO#( Byt e)
FI FO#( Byt e)
FI FO#( Byt e)
FI FO#( Byt e)

Reg#( Byt e)
Reg#( Byt e)

rule incr_cl
clock <=
endrul e

nitions

input_fifo <- nkFl FQ
chan0 _fifo <- nkFl FQ
chanl fifo <- nkFl FQ
chan2_fifo <- nkFl FQ

cl ock <- nkReg(1);
i nput _byte <- nkReg(0);
ock;

clock + 1;

rul e route_pkt;
let first_elem= input_fifo.first;

| et addr
i f (addr
if (addr
i f (addr

if (addr
$di spl

el se

SBT Router Design

= first_elen{1:0];

== 2'b00) chanO_fifo.enq(input _ fifo.first);
== 2'b01) chanl fifo.enq(input fifo.first);
== 2'b10) chan2 fifo.enq(input fifo.first);

= 2'b11)
ay ("*9%d* [SBT] Forwarding to CHANNEL: % - DATA: %", cl ock, addr,
first_elenf7:2]);



Politehnica University Bucharest Automatic Control and Computer Science Department

$di splay ("*%d* [SBT] Discarding packet with bad address - DATA %
ADDR: %", clock, first_eleni7:2], addr);

i nput _fifo.deq;
endrul e

met hod Action read _pkt (data_in);
input_fifo.enq (data_in);
endnet hod

met hod ActionVal ue#(Byte) chan0;
let first_elem= chanO_fifo.first;
chanO_fi fo. deq;

return first_elem
endnet hod

met hod ActionVal ue#(Byte) chanl
let first _elem= chanl fifo.first;
chanl_fifo. deq;

return first_elem
endnet hod

met hod Acti onVal ue#(Byte) chan2;
let first_elem= chan2_fifo.first;
chan2_fi fo. deq;

return first_elem
endnet hod

endnodul e

endpackage

SBT Router Design 7



Politehnica University Bucharest Automatic Control and Computer Science Department

3.2. SBT Top.bsv

[l File: SBT top
/] Description: contains top nodule to sinulate the SBT_Router
i mport SBT_Router :: *;

(* synthesize *)
nmodul e nkTop (Enpty);

SBT Router Interface router <- nkSBT_Router;
Reg#(Byte) data <- nkReg(0);
Reg#(Byte) count <- nkReg(0);
Reg#(Byte) clock <- nkReg(1l);

rul e send_dat a;
$display ("*%d* [TOP I] Sending DATA % | ADDR %", clock, data[7:2],
data[ 1: 0]);
router.read_pkt (data);
router.packet_valid(1l);

if (data[1:0] != 2'bll) count <= count + 1;

data <= data + 5;
endrul e

rul e read_chan0;
Byte a <- router.chanO;
count <= count - 1;

$di splay ("*%d* [TOP 0] ChanO receiving DATA: % | ADDR %", clock, a[7:2],
a[1:0]);
endrul e

rul e read_chani;
Byte a <- router.chanl;
count <= count - 1;

$display ("*%d* [TOP 1] Chanl receiving packet DATA: % | ADDR %", clock,
a[7:2], a[1:0]);
endrul e

rul e read_chan2
Byte a <- router.chan2;
count <= count - 1;

$di splay ("*%d* [TOP 2] Chan2 receiving packet DATA: % | ADDR %", cl ock,
a[7:2], a[1:0]);
endrul e

rul e incr_clk;

clock <= clock + 1
endrul e

SBT Router Design 8



Politehnica University Bucharest Automatic Control and Computer Science Department

rul e end_simul ation;
if (clock >= 20)
if (count == 0) $finish(0);
endrul e

endnodul e

SBT Router Design 9



